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ABSTRACT 

The effect of selection on estimates of 
variance components using Gibbs sam- 
pling mean and mode, REML, and mini- 
mum variance quadratic unbiased esti- 
mation was examined through simula- 
tion. One hundred replicates were gener- 
ated for 27 combinations of three levels 
each of selection schemes, population 
structures, and heritabilities. All popula- 
tions consisted of 400 animals. All 
methods were empirically unbiased, ex- 
cept for the Gibbs sampling estimate of 
the mode for small variance components, 
for which the posterior distribution was 
skewed. Mean squared errors decreased 
for Gibbs sampling and REML estimates 
when data were selected, but mean 
squared errors increased with selection 
and were largest for minimum variance 
quadratic unbiased estimation. No pat- 
tern existed for differences in mean 
squared errors for randomly mated and 
unselected data, suggesting that the 
differences were due to the direct effect 
of selection rather than to changes in 
population structure. Based on these 
results, the use of minimum variance 
quadratic unbiased estimation of vari- 
ance components may be less accurate 
than other methods for potentially 
selected field data. Advantages of Gibbs 
sampling to estimate variance compo- 
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nents include simple programming of the 
Gibbs sampling algorithm and easy cal- 
culation of variance of estimates and 
confidence intervals. 
(Key words: Gibbs sampling, restricted 
maximum likelihood, selection, variance 
components) 

Abbreviation key: GS = Gibbs sampling, 
GSMD = Gibbs sampling mode, GSMN = GS 
mean, IG = inverted gamma, MIVQUE = 
minimum variance quadratic unbiased estima- 
tion, MSE = mean squared errors, PS = popu- 
lation structure, Rp = randomly mated popula- 
tion, SP = selected population, UP = 
unselected population, VC = variance compo- 
nents. 

INTRODUCTION 

Estimation of variance components (VC) 
has long been an important aspect of quantita- 
tive genetics. Accurate estimates of VC are 
important because prediction error variances 
for predicted genetic values increase as esti- 
mated values deviate from the true values (7, 
15). The current method of choice for estima- 
tion of VC is REML (12). However, computa- 
tional limitations have restricted the size of the 
data files that can be considered for estimation 
of VC. Several strategies have been used to 
increase that limit, including the use of 
derivative-free algorithms (10, 11, 20), the use 
of sparse matrix techniques (13), or both (1, 2). 
However, these procedures still require the 
tridiagonalization or Gaussian elimination of 
the traditional mixed model equations or solu- 
tions to the mixed model equations, possibly 
with fixed effects absorbed. These steps re- 
main as the computational limit for calculation 
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of REML estimates of VC. Additionally, the 
variance of these estimates and appropriate 
confidence intervals can usually be estimated 
only with the use of approximations because of 
computational limitations. 

An alternative method to estimate VC, 
Gibbs sampling (GS), is investigated here. 
Gibbs sampling is one method in a larger class 
of methods. referred to as Marcov chain Monte 
Carlo methods. Gibbs sampling is based on 
Bayesian methods for estimation of VC but is 
evaluated based on its frequentist properties. 
Use of GS has several advantages: 1) no solu- 
tion to the mixed model equations is needed; 
2) when simple sparse matrix techniques are 
used, analysis of data files larger than those 
using REML may be possible; 3) GS yields 
direct and exact estimates (to any arbitrary 
precision) of VC and breeding values and con- 
fidence intervals for those estimates; and 4) GS 
is well suited for use on microcomputers and 
workstations because relatively little informa- 
tion needs to be kept in memory [similar to 
requirements for iteration data (16)]. Depend- 
ing on the data structure, the computational 
demands for GS may be nearly linear for the 
number of animals in each round, compared 
with a quadratic to cubic relationship for tradi- 
tional methods (depending on implementation), 
although the number of rounds of computa- 
tions will likely be much larger. Thus, exact 
(rather than approximate) estimates of VC with 
confidence intervals may be feasible for large 
data files on relatively modest computing facil- 
ities. 

Gibbs sampling is a method of numerical 
integration that allows inferences to be made 
about joint or marginal densities, even when 
those densities cannot be evaluated directly (5). 
The GS algorithm is based on generation, in 
sequence, of variables from all of the full 
conditional densities. The full conditional den- 
sity is the density of a variable given all other 
parameters in the model. For example, if GS is 
used to estimate the distributions of f(aly), 
f(bly), or f(a,bly), then the full conditional dis- 
tributions, f(alb,y) and f(bla,y), would be re- 
quired. To use GS to evaluate any of these 
densities, an arbitrary starting value for one of 
the variables would be chosen, and then values 
would be drawn from the full conditional den- 
sities in the sequence an - f(alb"-',y) and 
bn - f(blan,y), where - indicates that the varia- 
ble is a random variable from the distribution 

specified, and the superscript refers to the se- 
quence of the value in the GS chain. If the 
sequence is repeated enough, the distribution 
of the a and b samples will be from the 
distributions f(aly) and f(bly). and the a.b sam- 
ple pairs will be drawn from the f(a,bly) distri- 
bution. 

For estimation of VC, the joint density of 
interest is the distribution of fixed effects, 
random effects, and VC, all given the data. 
The marginal densities of interest in this prob- 
lem are the distribution of fixed effects, ran- 
dom effects, or VC, given the data. In this 
study, the marginal distribution of the VC, 
given the data, was of particular interest. 

Gibbs sampling has been applied to estima- 
tion of VC for a sire model ignoring relation- 
ships (4, 27). An animal model has been used 
by Wang et al. (28) and was used in the present 
study. 

The object of the study was to compare 
estimates of VC using different methods of 
estimation. The impact of selection, heritabil- 
ity, and pedigree information were of interest. 
Three methods of estimation of VC were con- 
sidered: GS, REML, and minimum variance 
quadratic unbiased estimation (MIVQUE). 
Data were simulated with and without selec- 
tion, with several heritabilities, and with differ- 
ent population structures 6s).  

MATERIALS AND METHODS 

Monte Carlo Simulation 

Data Simulation. Data for the simulation 
project were generated using a Monte Carlo 
procedure similar to that described by Soren- 
sen and Kennedy (22) and applied by van der 
Werf and de Boer (24) and by Pieramati and 
Van Vleck (14). This simulation method gener- 
ated k generations of animals with f females 
and m males in each generation. The first 
generation animals were sampled from a con- 
ceptually infinite population of unrelated 

2 animals with additive genetic variance of U 

and residual variance of g:. Genetic ana 
residual effects were distributed normally, and 
all covariances among base animal genetic and 
residual effects were null. For generations after 
the first, a fraction of the males was chosen as 
sires of the next generation, and each sire was 
mated to an equal number of females. Each 
female was mated only once. The mates were 
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assigned randomly once the sires were chosen; 
no attempt was made to minimize current or 
future inbreeding levels. Inbreeding was ac- 
counted for only in the Mendelian sampling 
(ai) variance, 

VX(+~) = (i - f (FSl + ‘D,)) 

(24), where F and FDI are the inbreeding 
coefficients (3) of the sire and dam of animal i, 
respectively. Inbreeding was calculated using 
the tabular method of calculating relationships 
(26). No inbreeding depression was simulated. 
In this study, the number of male and female 
progeny in each generation were equal, and 
one-quarter of the males were chosen as sires. 

Once the mating assignments were made, 
one male and one female progeny were gener- 
ated for each combination of sire and dam. The 
additive genetic effect of an offspring was 
simulated as 

Si 

1 
‘ - 2  a. - - (asi+ ~ D J  + ai ,  

where a and aD, are the additive genetic 
effects of the sire and dam of animal i, respec- 
tively, and Cpi, Mendelian sampling, is dis- 
tributed independently as N(O,Var(Qi)). Finally, 
the phenotypic value, y,, of offspring i was 
calculated as yi = ai + e,, where ej is the 
independent residual effect distributed N(O,<). 

PS. To evaluate the effect of many versus 
few generations of selection, three different PS 
were used: PSI, PS2, and PS3. Population 
structure 1 had 10 generations of selection 
with 20 animals of each sex in a generation, 
PS2 had 5 generations with 40 animals of each 
sex in a generation, and PS3 had only 2 gener- 
ations with 1 0 0  animals of each sex in a 
generation. Each PS had a total of 400 
animals. 

Selection Methods. Three types of selection 
were applied to all PS to create selected (SP), 
unselected (UP), and randomly mated (RP) 
populations. The SP were generated by choos- 
ing the sires based on phenotypic value. Each 
UP was generated corresponding to a SP with 
an identical relationship structure. The effects 
of selection on phenotypic value should have 
been removed from the UP data, but the PS 
change that was caused by the selection would 
remain. The procedure is similar to that pro- 
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posed by Van Vleck and Gregory (25), who 
suggested simulation of data for a structure 
obtained from field data. The UP data were 
generated as follows: 1) calculation of the 
Cholesky decomposition, L, of the numerator 
relationship matrix, A, generated using mass 
selection (i.e., LL’ = A); 2) calculation of a = 
Lr. where r is a vector of independent random 
variables distributed N(0.d) and 3) yi = ai + ei, 
where ai is element i of a. Thus, for each 
population created through selection. a cor- 
responding UP was generated, which had an 
identical relationship structure but no direct 
phenotypic selection. In addition, RP were also 
simulated, for which the same fraction of 
males was randomly chosen. 

Heritabilities. Three heritabilities were ex- 
amined: . l ,  .3, and .5. The total variance in the 
base generation was constant at 20 for all data 
files. Genetic variances in the base generation 
were 2, 6, and 10, and residual variance, 18, 
14, and 10, for heritabilities of . l ,  .3, and .5,  
respectively. 

One hundred replicates were generated for 
each of the 27 combinations of PS, selection 
method, and heritability. 

GS for Estimation of VC 

Model. The usual mixed linear model with 
one random effect was used to analyze the 
simulated data. The form of the model used 
Was 

y = XD + Zu + e, 

where y is an n x 1 vector of observations, D is 
a k x 1 vector of fixed effects, treated in the 
Bayesian setting as a vector of random effects 
with a flat prior distribution representing no 
prior knowledge about the values, U is an r x 1 
vector of random effects, e is an n x 1 vector 
of random residuals, X and Z are appropriately 
dimensioned incidence matrices, and r and n 
are the number of random effects and observa- 
tions. Although the only fixed effect consid- 
ered was an overall mean, the derivation was 
done for a general animal model. The mean 
was included because, although the true mean 
was 0, the phenotypic mean was unlikely to be 
0, especially in the selected data files. The 
phenotypic mean of the selected data files is a 
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function of the number of generations of selec- 
tion. Therefore, to be certain that the pheno- 
typic mean did not affect the estimation of VC, 
the grand mean was included in the model. 

Prior Densities and Model Assumptions. 
Prior distributions are needed to describe the 
Bayesian model completely. Flat priors for all 
effects in the model should result in estimates 
very similar to those obtained using REML (6). 
However, the use of some improper (i.e., in- 
finite area under the curve) priors, including 
flat priors, for VC create difficulty in the appli- 
cation of a GS approach because use of these 
priors results in improper posterior densities of 
the VC (8, 9, 23). 

For the fixed effects, a flat prior was used, 
so that f@) = constant, indicating no prior 
knowledge about these effects. The random 
effects were all assumed to be normally dis- 
tributed, i.e.. u l d  - N(0,Au:). Independent 
normally distributed errors were assumed, 

where I is an identity matrix. 
For computational simplicity, a distribution 

from the conjugate family for the VC in the 
model was used. The inverted gamma (IG) 
distribution was used as the prior distribution 
of additive genetic and residual VC. The form 
of the IG(ai, yi) distribution is 

4 2 0; ai, yi > 0; and i = a, e, 

where ai is a shape parameter describing the 
certainty of the knowledge about variance 

component i, and yi is the scale parameter that 
determines the expected value of variance 
component i. The expected value of an IG(a,b) 
variable is l/[(a - l)b], and the variance is 
l/[(a - 1?(a - 2)b2]. 

The inverted chi-square distribution is often 
used in place of the IG distribution. The in- 
verted chi-square distribution is a special case 
of the IG, with ai = df/2 and yi = 2, where df 
is the degrees of freedom associated with the 
corresponding chi-square distribution. The IG 
distribution, which is more flexible than the 
inverted chi-square distribution in the choice 
of the parameters, was used in the present 
study. 

Initial estimates of VC were calculated us- 
ing ai values of 1.000001. The values of yi 
were chosen so that the expected value of the 
prior distributions were equal to the value of 
the VC in the base generation of the simula- 
tion. Using these values, the mean of the prior 
distribution was finite, and the variance was 
infinite. When these priors were used for the 
data simulated with low heritability (.l), most 
genetic variance estimates were very near zero, 
i.e., less than lo4. To solve this problem, a 
value for ai >2 was chosen. A value of 
2.000001 was used for all subsequent analyses. 
The value was chosen so that the variance of 
the prior was finite and the distribution was as 
flat as possible, so the estimates should be 
similar to those obtained with REML. Similar 
to the previous set of priors evaluated, the 
value of yi was chosen so that the mean of the 
prior distribution was equal to the variance in 
the base generation of the simulation. From 
these assumptions about the distributions, the 
joint and conditional densities were deter- 
mined. 

Joint Posterior Densify. The joint posterior density can be written as the product of the prior 
and conditional densities previously described. The joint density of the parameters given the data 
and the prior information is 
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which can be rearranged and written as 

x exp { - - [i u‘A-’u + k]}. 
“a 

Full Conditional Densities. The full conditional densities required for GS can be derived from 
Equation [ 11 by treating the variables that are known as constants and reorganizing the remaining 
variables into the form of the kernel of a recognized density. 

First, considering only terms that involve @, the full conditional density of the fixed effects is 

f@lu, U,”, y) 

1 (y - X@ - Zu)’(y - Xfl - 

[@ - (X’X)-lX’(y - ZU))’(X’X#? - (x’xr’x’gr - ZU))] 1 

where 
normal density, and, therefore, 

= (X’XFlX’gl - Zu). The full conditional density of the fixed effects is the kernel of a 

2 Next, let a = </U,, and, then, considering only terms that involve U, the full conditional 
density of the random effects is 

1 
(y - Xfl - Zu)’(y - Xg - ZU) - - (u’A- 

2 4  
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where ii = G’Z + A-la)-’Z’(y - XS). This form is also the kernel of a normal density. and, 
therefore, 

However, the conditional distribution of each random effect can be derived using partitioned 
matrix results (18) and the form of the conditional normal density (17). Let ui be element i of U, 
an be diagonal element i of A-]. a-i be row i of A-’ with al* removed, and U-i be the vector of 
random animal effects without element i, ui. Finally, if animal i has an observation, then xo) is 
the row of X corresponding to the observation for animal i, and yi is that observation. Then, if 
animal i has an observation 

and, if animal i has no observation, 

Finally, considering only terms that involve the VC, the conditional distributions of the VC 
are 

and 

These two forms contain kernels of IG densities. Specifically, 

and 
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GS Algorithm. The GS algorithm could be simplified because the only fixed effect was an 
overall mean, p ,  and because all animals had observations. The following information was used 
to reduce computations: 

n 
(y - xg - ZUYb - xg - ZU) = c bi - p - U$. 

I= 1 
X’X = n, 

and 
n 

X’Q - ZU) = c bi - Ui). 
i= 1 

Based on the full conditional densities, the GS 
algorithm used was 

1. calculate p as the arithmetic mean of the 
observations, 

2. calculate U, = h2(y, - p ) ,  i = 1 ,..., n, 
3. calculate - Xj3 - Z U ) ’ ~  - Xj3 - Zu) 

n 

= C Oli - ~1 - U i Y  
i=l  

2 4. generate ue from [ 5 ] ,  
5. generate p from [ 2 ] ,  
6. calculate u‘A-lu, 
7. generate U, from [4], 

2 2  8. calculate a = ue/ua, 
9. generate U, from [3], for i = 1, 2 ,  ..., n, 

2 

and 
10. repeat steps 3 through 9. 

Because arbitrary values are used for start- 
ing a GS chain, a “burn-in” period is required 
before the samples from the GS can be consid- 
ered drawn from the joint distribution. In 
preliminary investigation, the samples drawn 
over the sequence of the GS were subjectively 
evaluated for trends and variability. Based on 
those results, a burn-in of 100 rounds was used 
for these analyses. To estimate many 
parameters for a distribution, a sample of in- 
dependent observations is required. Consecu- 
tive samples from a GS chain are correlated, 
and, in order to obtain independent samples, 
not all samples can be used. Based on prelimi- 

nary analysis of samples from the GS chain, 
samples from every 20th round after burn-in 
were used. With samples used only every 20th 
round, the correlation of consecutive samples 
was <.05. The GS loop was repeated 5000 
times for each data file. 

Posterior Parameter Estimates. To estimate 
the GS mean (GSMN). the expected value of 
the VC, given the current value of the sum of 
squares and priors, was calculated and aver- 
aged starting with round 100. The mean of a 
distribution is unbiased even if correlated sam- 
ples are used; therefore, all samples after burn- 
in were used to estimate the mean of a distri- 
bution. Based on the expected value of an IG 
variable. 

~ SSA 1 
E(@SA) = 2 + y ,  

; + a , - 1  

and 
SSE 1 

Sums of squares for every 20th round after 
100 were used to estimate the posterior density 
of the VC. Based on the estimate of the 
posterior density for each VC, an estimate of 
the GS mode (GSMD) was calculated as the 
value with the highest density. 

The posterior density of the VC was calculated as the average of the conditional distribution 
of the VC, i.e., for the posterior of the additive genetic variance, 
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f(+Y) = 

# = .01, .02, ..., 40, 
ai 

and for the posterior of the residual variance: 

a' = .01. .02, ..., 40, 
e, 

where p is the number of samples (i.e., sums of squares) used to estimate the postenor 
distribution. 

REML. The derivative-free REML (20) programs of Meyer (10, 1 1 )  were used to estimate VC 
The only fixed effect included in the model was the overall mean. The starting value for 
heritability supplied to the programs was the true simulation values, i.e., .1, .3, and .5. 

MIVQUE. The VC were also estimated using a MIVQUE procedure as described by Sorensen 
and Kennedy (21). Let 

coo col X'X X'Z [z] = [CIO C1J = [Z'X Z'Z + A - l y l '  = [; I + 

w = [X Z], 

s = [t] = CW'y, 

and 

Q2 = yty - y'WCW'y, 

where y is the prior estimate of a. Then, 

E(C ''A+ WZAZ'W) tr(C ''A-' C W'W '] [ :;] 
n - tr(CW'W) [ Z ]  = [ tr(ZAZ') - tr(CW'ZAZ'W) 

] [:;I . 
a - 2r@(A-'Cl1) + r 2 W A - 1 C l l h  tr(A-'C11) + ~tr ( (A- 'c~ l? )  

n - -> - a + ~ E ( A - ' C ~ ~ )  = [  ay - r2tr(A-'C,,) 

The true variance ratios were used for y: 9, 2.33, and 1 for heritabilities of . l ,  .3, and .5, 
respectively. 
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RESULTS AND DISCUSSION 

Mean Estimates of VC 

Mean estimates of VC for all four methods 
(GSMN, GSMD, REML. and MIVQUE) with 
empirical standard errors are presented in Ta- 
bles l and 2. The GSMD estimates appeared to 
underestimate VC. The underestimation by the 
GMSD decreased as the VC to be estimated 
increased and was relatively small for the esti- 
mates of the residual variances. The bias was 
due to the increased skewedness of the distri- 
bution as the variance component approached 
0. The remaining estimators appeared to be 
relatively unbiased; that is, none of the remain- 

ing estimators seemed to be superior based on 
their being biased. 

Mean Squared Error of Estimates of VC 

The mean squared errors (MSE) of esti- 
mates of VC for all four methods (GSMN, 
GSMD, REML, and MIVQUE) are presented 
in Tables 3 and 4. The MSE was defined as 

n 1  
I= I $estimate, - quad$, 

where the quadratic form values (quad) were 
u’A-’u/n and e’eln for the genetic and residual 

TABLE 1. Mean and empirical standard deviations for estimates of genetic variance using Gibbs sampling mean 
(GSMN). Gibbs sampling mode (GSMD). REML. and minimum variance quadratic vanance estimation (MIVQUE) with 
quadratic form (QUAD), for combinations of hentability (HER). population structure (E). and selection method (SM). 

HER PSI SM2 QUAD3 GSMN GSMD REML MIVQUE 

.1 

.1 

.1 
,1 
.1 
.1 
.1 
,1 
. I  
.3 
.3 
.3 
.3 
.3 
.3 
.3 
.3 
.3 
.5 
.5 
.5 
.5 
.5 
.5 
.5 
.5 
.5 

1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 

- 
X SD 
2.0 .01 
2.0 .01 
2.0 .01 
2.0 .01 
2.0 .01 
2.0 .01 
2.0 .01 
2.0 .02 
2.0 .02 
6.1 .04 
6.0 .04 
6.0 .05 
5.9 .04 
6.0 .04 
6.0 .04 
6.0 .04 
5.9 .03 
6.0 .04 

10.1 .07 
10.0 .07 
9.9 .07 

10.2 .07 
10.1 .08 
10.0 .07 
10.0 .07 
9.9 .f% 

10.0 .07 

- - - 
X SD X SD X SD SD 

1.9 .07 1.2 .06 2.2 .12 2.2 .I2 
1.8 .07 1.2 .06 1.9 .I3 1.8 .I3 
1.7 .06 1.4 .06 1.8 .09 1.6 .I9 
1.8 .07 1.1 .06 1.8 .13 1.8 .I3 
1.9 .08 1.2 .07 2.0 .13 2.0 .I4 
1.8 .06 1.2 .06 2.0 .09 1.9 .I5 
2.0 .09 1.1 .07 2.4 .17 2.1 .20 
1.9 . I O  1.1 .09 2.1 .18 2.0 .I8 
2.0 . I O  1.1 .10 2.3 .16 2.2 .I8 
6.1 .I9 5.3 .20 6.3 .22 6.3 .21 
5.8 .I6 5.0 .16 6.0 .19 6.0 . I8  
5.9 .I4 5.5 .14 6.0 .15 6.1 .28 
5.7 .I7 4.9 .16 5.9 .19 5.8 .I9 
5.5 .I6 4.8 .17 5.6 .19 5.7 . I8  
5.9 .I5 5.5 .16 6.1 .17 6.1 .26 
5.8 .I7 5.2 .19 6.2 .20 6.2 .20 
5.4 .18 4.7 .19 5.5 .22 5.6 .22 

6.3 .22 5.9 .17 5.5  .19 6.3 .19 
10.2 .27 9.7 .27 10.3 .29 10.3 .29 
9.9 .29 9.3 .29 10.0 .30 9.9 .29 

10.0 .I8 9.6 .17 9.9 .18 10.0 .31 
10.0 .23 9.5 .24 10.1 .24 10.1 .23 
10.0 .23 9.4 .23 10.0 .23 10.0 .23 
10.1 .I8 9.7 .18 10.1 .19 10.2 .29 
9.8 .22 9.4 .23 9.9 .23 9.9 .22 
9.6 .22 9.1 .23 9.6 .23 9.6 .23 

10.1 .22 9.8 .22 10.2 .22 10.3 .26 

lPS. 1 = 10 generatlons with 20 animals of each sex in each generation, 2 = 5 generations with 40 animals of each 

%M. RD = randomly mated population, UP = unselected population, and SP = selected population 
3Quad for genetic vanance. u’A-’u/n. 

sex in each generation, and 3 = 2 generations with 100 animals of each sex in each generation 
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variances, respectively, and U and e are vectors 
of values generated during the simulation. The 
values of the quadratic forms were different for 
each simulated data file. Although not 
presented. MSE based on the simulation values 
(2, 6. and 10 for genetic variance and 10, 14. 
and 18 for residual variance) were very similar 
to those based on the quadratic forms. 

Effects of Selection. The same data were 
used for all methods of estimation; that is, 
each data file had VC estimated with each 
method. Estimation of VC using the same data 
tended to cause similar patterns for each of the 
estimation methods when those methods were 
compared. 

There were no systematic differences in the 
MSE of RP and UP for any of the estimators. 
This finding suggests that differences observed 

may have been due to random variability in the 
simulation of the data files. Additional repli- 
cates would be needed to evaluate more pre- 
cisely the impact of selection on MSE for 
these two types of data. 

However, differences were clear in the MSE 
of estimates of VC when the SP  data were 
compared with the RP or UP for population 
structures having multiple generations of selec- 
tion (PSI and PS2). For this group of data, the 
MSE for the estimates obtained by GS (GSMN 
and GSMD) and REML were smaller for the 
SP  than for the UP or RP. The MSE for 
MIVQUE, in contrast. were larger for SP than 
for the UP or RP. 

These results agree with those observed in 
previous studies (14, 21) in which MSE 
differed for estimates based on SP and RP. 

TABLE 2 Mean and empincal standard deviations for estimates of residual vmance using Gibbs sampling mean 
(GSMN), Gibbs sampling mode (GSMD), REML, and minimum vanance quadratic vanance estimation (MIVQUEE) with 
quadratic form (QUAD), for combinations of hentability (HER), population structure (PS), and selection method ISM) 

HER PSI SM2 QUAD3 GSMN GSMD REML MIVQUE 

. I  

. I  

. I  

. I  

. I  

. I  

. I  

. I  

. I  

.3 

.3 

.3 

.3 

.3 

.3 

.3 

.3 

. 3  

.5 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 

- 
X S D  
18.0 .I2 
18.1 . I4 
18.0 .14 
18.1 . I 1  
18.1 .I4 
18.3 .I4 
18.1 .I4 
17.9 .I3 
18.2 .I4 
14.1 .09 
14.1 . I O  
14.0 . I O  
14.0 .09 
14.0 . I O  
14.0 .10 
13.8 .09 
14.2 .09 
14.3 .10 
10.0 .07 
10.1 .07 
9.9 .07 

10.1 .07 
10.0 .06 
9.9 .07 

10.0 .07 
10.1 .07 
10.0 .07 

- 
X SD 
18.1 .13 
18.2 .15 
18.2 .I4 
18.2 .13 
18.2 .15 
18.6 .16 
18.0 .17 
17.9 .I7 
18.2 .18 
14.2 .16 
14.2 .14 
14.0 .13 
14.2 .15 
14.3 .15 
14.1 .14 
14.1 .17 
14.7 .I7 
14.5 .I6 
10.0 .I4 
10.1 .I4 
9.9 .I1 

10.2 .14 
10.2 .13 
9.9 .I4 

10.2 .I8 
10.3 .I7 
9.9 .I8 

- 
X SD 
17.9 .13 
18.1 .I5 
18.0 .14 
18.1 .12 
18.1 .I5 
18.4 .16 
18.0 .16 
17.9 .17 
18.2 . I8  
14.1 .16 
14.1 .14 
13.9 .13 
14.1 .15 
14.2 .15 
13.9 . I4  
13.9 .17 
14.6 .I8 
14.3 .16 
9.8 .I4 

10.0 .14 
9.7 10 

10.1 .14 
10.1 .13 
9.8 .14 

10.0 19 
10.1 .I7 
9.7 . I 8  

- 
X SD 
17.9 .I5 
18.1 .I6 
18.1 .14 
18.1 .I5 
18.1 .I7 
18.4 .I7 
17.7 .21 
17.8 .20 
17.9 .21 
14.0 .17 
14.0 .15 
14.0 .I3 
14.1 .16 
14.2 .I6 
14.0 .15 
13.7 .I9 
14.5 .20 
14.1 .17 
9.9 .14 

10.1 .14 
9.9 . l l  

10.1 .15 
10.1 .I3 
9.9 . I4  

10.1 .19 
10.2 .17 
9.8 .I8 

- 
X SD 
17.9 .15 
18.2 .17 
18.2 .18 
18.2 .15 
18.1 .17 
18.4 .20 
17.9 .24 
17.9 .21 
17.9 .22 
14.0 .I7 
14.0 .14 
13.9 .20 
14.1 .16 
14.1 .I6 
13.9 .20 
13.7 .I8 
14.4 .I9 
14.2 .I8 
9.9 .I4 

10.1 .I4 
9.8 .I7 

10.2 .I5 
10.2 .13 
9.8 .20 

10.1 .I8 
10.2 .17 
9.8 .21 

IPS: 1 = 10 generations with 20 animals of each sex in each generation, 2 = 5 generations with 40 animals of each 

*SM: RD = randomly mated population, UP = unselected population, and SP = selected population. 
‘Quad: for residual variance. e ’ e h  

sex in each generation, and 3 = 2 generations with 100 animals of each sex in each generation. 
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Sorensen and Kennedy (21) found an increase 
in MSE for estimates of VC from SP com- 
pared with RP using MIVQUE. Pieramati and 
Van Vleck (14) found that MSE for REML 
estimates decreased under similar conditions. 
Because REML and MIVQUE were never ap- 
plied to the same data, whether this difference 
was due to artifacts in the simulated data or to 
genuine differences caused by selection was 
uncertain. 

The differences in MSE caused by selection 
did not exist for PS3 for which only two 
generations of data were present. No consistent 
pattern existed in the differences for MSE of 
the methods when only two generations of data 
were available. The lack of difference suggests 
that multiple generations of selection are 
needed to change the MSE. 

The effect of selection on phenotypic 
values, rather than the change in the PS, ap- 
pears to be the main cause of differences in 
accuracy for methods of estimation of VC 
observed in the present study. Differences in 
the MSE of estimates of VC were large for 
data based on SP and UP with multiple genera- 
tions of data (i.e., PS1 and PS2). Because these 
populations had identical data structures and 
because the only difference between the two 
types of data was the presence or lack of 
selection, selection must have caused the 
differences. In addition, because the MSE for 
the UP and RP were similar, the change in PS 
caused by selection in these populations did 
not dramatically affect the accuracy of estima- 
tion of VC. 

Comparison of Estimation Methods. The 
MSE tended to be smaller for the estimators 

TABLE 3. Mean squared errors for estimates of genetic variance using Gibbs sampling mean (GSMN). Gibbs sampling 
mode (GSMD), R E M ,  and minimum variance quadratic variance estimation (MIVQUE) for the combinations of 
heritability (HER), population structure (ps). and selection method (SM). 

HER PSI SMz GSMN GSMD REML MIVQUE 

. I  1 RP .46 1.11 1.31 1.34 

. I  1 UP .55 1.11 1.63 1.66 

. I  1 SP .44 .82 .82 3.71 

.1 2 RP .50 I .22 1.52 1.62 

.1 2 UP .67 1.19 1.69 1.98 

.1 2 SP .44 1.11 .9 1 2.32 

.1 3 RP .85 1.39 3.00 4.19 

.1 3 UP .96 1.58 3.08 3.26 

.1 3 SP .97 1.69 2.74 3.24 

.3 1 RP 3.56 4.63 4.79 4.29 

.3 1 UP 2.62 3.69 3.59 3.27 

.3 1 SP 1.56 1.90 1.83 6.94 

.3 2 RP 2.62 3.64 3.27 3.23 

.3 2 U P  2.87 4.09 3.57 3.31 

. 3  2 SP 2.06 2.40 2.41 6.26 

.3 3 RP 2.76 4.15 3.83 3.78 

.3 3 U P  3.55 5.52 5.04 4.9 I 

.3 3 SP 2.70 3.59 3.74 4.65 

.5 1 RP 6.57 6.59 7.43 7.31 

.5 1 UP 7.13 7.57 7.72 7.16 

.5 1 SP 2.99 3.12 3.15 8.87 

.5 2 RP 4.89 5.63 5.25 5.14 

.5 2 UP 4.02 4.79 4.15 4.26 

.5 2 SP 3.11 3.17 3.24 7.74 

.5 3 RP 4.70 5.44 5.07 4.76 

.5 3 UP 5.02 5.71 5.55 5.39 

.5 3 SP 4.63 5.05 5.01 6.65 

IPS: 1 = 10 generations with 20 animals of each sex in each generation, 2 = 5 generations with 40 animals of each 

2SM: RD = randomly mated population. UP = unselected populations, and SP = selected population. 
sex in each generation. and 3 = 2 generations with 100 animals of each sex in each generation. 
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based on GS. especially for the data simulated 
with low heritability. This difference is due. at 
least in part, to the impact of the prior informa- 
tion used in the GS estimates. To investigate 
the effect of the expected value of the prior on 
the estimates of VC, GS estimates were calcu- 
lated for low heritability data with the priors 
used for the other heritability levels. .3 and .5. 
The means and MSE for these estimates are 
presented in Table 5.  These results show the 
bias introduced by use of a prior with an 
incorrect expected value, but this bias was 
relatively small, especially for the estimates 
based on the priors for a heritability of .3. If 
MSE are compared, the GSMN estimates com- 
pare quite favorably using the moderate herita- 
bility, .3. The MSE for the multiple generation 
data files (PS1 and PS2) are smaller than those 
for the REML and MIVQUE estimates. 

Most traits can likely be categorized a priori 
into ranges corresponding to the three herita- 
bilities used in this study. These results show 
that use of this knowledge improves precision 
of estimation of VC (based on MSE) over 
current methods. Even if the prior distribution 
is relatively poor, GS, although possibly bi- 
ased, may have MSE similar to those for 
REML and MIVQUE. The effect of the prior 
distribution decreases as the heritability or the 
amount of information increases. Therefore, 
the impact of the prior distribution may be 
negligible for most parameter estimates based 
on field data. The effect of the prior was 
relatively large in this study because small data 
files (400 animals in each population) were 
used. 

The estimators based on posterior means 
and modes had quite similar properties when 

TABLE 4. Mean squared errors for estimates of resldual variance using Gibbs sampling mean (GSMN), Gibbs sampling 
mode (GSMD), REML, and minimum variance quadratic variance estimation (MIVQUE) for the combinations of 
heritability (HER), population structure (PS), and selection method (SM). 

HER PS' SM2 GSMN GSMD REML MIVQUE 

. I  

. I  

. I  

.I 

. I  

. I  

. I  

. I  

. l  

.3 

.3 

.3 

.3 

.3 

.3 

.3 

.3 

.3 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

.5 

1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 
RP 
UP 
SP 

.45 

.52 

.37 
3 1  
.68 
.55 

1 .oo 
I .02 
1.15 
1.63 
1.21 
.74 

1.51 
1.41 
.99 

1.91 
2.83 
2.11 
1.54 
1.90 
.74 

1.74 
1.32 
1.22 
3.19 
2.27 
2.47 

.43 

.49 

.32 

.46 

.64 

.48 

.90 

.99 
1.03 
1.68 
1.24 
.I1 

1.49 
1.43 
.94 

2.15 
3.00 
2.18 
1.62 
2.05 

.78 
1.71 
I .37 
I .22 
3.41 
2.44 
2.61 

.83 

.99 

.46 
1.06 
.30 
.75 

2.77 
2.68 
2.37 
1.93 
1.55 
.83 

I .76 
I .65 
1.05 
2.48 
3.76 
2.51 

1.67 
2.00 

.76 
1.81 
1.32 
1.27 
3.35 
2.53 
2.67 

.79 
I .05 
1.82 
1.12 
1.51 
1.58 
3.83 
2.79 
2.78 
1.75 
1.37 
2.62 
1.66 
1.48 
2.59 
2.42 
3.60 
3.09 
1.69 
1.90 
2.20 
1.82 
1.35 
2.95 
3.24 
2.40 
3.64 

IPS: 1 = 10 generations with 20 animals of each sex in each generation, 2 = 5 generations with 40 animals of each 

*SM. RD = randomly mated population, UP = unselected populations, and SP = selected population. 
sex in each generation, and 3 = 2 generations with 100 animals of each sex in each generation. 
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TABLE 5.  Means and mean squared errors for variance components estimated using Gibbs sampling mean for low 
hentability using prior values corresponding to .3 and .5 heritabilities (PRIOR) and combinations of population structure 
(PS), and selection method (SM). 

PRIOR PS' SM2 Genetic Residual - - 
X MSE X MSE 

.3 1 RP 2.94 1.26 17.41 .77 

.3  1 UP 2.86 1.33 17.53 .84 

.3 1 SP 2.43 .53 17.77 .33 

.3 2 RP 2.84 1.19 17.42 .91 

.3 2 UP 2.91 1.41 17.48 .94 

.3 2 SP 2.62 .66 17.97 .53 

.3 3 RP 3.21 2.36 17.01 2.25 

.3 3 UP 3.06 2.03 16.97 1.80 
3 3 SP 3.15 2.27 17.19 1.99 

.5 1 RP 3.64 3.06 16.99 1.46 

.5 1 UP 3.54 2.93 17.13 1.47 

.5 1 SP 2.88 1 . 1 1  17.54 48 
5 2 RP 3.51 2.79 16.97 1 7 3  

.5 2 UP 3.58 3.11 17.04 1.68 

.5 2 SP 3.14 1.56 17.66 82 

.5 3 RP 3.95 4.76 16.43 3.92 

.5 3 UP 3.84 4.39 16.36 3.35 

.5 3 SP 3.81 4.16 16.67 3.19 

IPS: 1 = 10 generations with 20 animals of each sex in each generation, 2 = 5 generations with 40 animals of each 

%M: RD = randomly mated population, UP = unselected populations. and SP = selected population. 
sex in each generation, and 3 = 2 generations with 100 animals of each sex in each generation. 

VC were relatively large and the posterior 
distributions of the VC were fairly symmetric. 
Differences were large for genetic variance for 
low heritability data, in which GSMD tended 
to underestimate genetic variance and, there- 
fore, had larger MSE. Because no computa- 
tional advantage exists for calculation of the 
mode of the posterior distribution (which is 
more difficult to calculate than the mean), the 
GSMN would be more appropriate than the 
GSMD for estimation of VC. 

Overall, the GSMN and REML estimates 
were quite similar, especiaHy for the data for 
traits with high heritability (see Figure 1 for a 
comparison of the MSE for data simulated 
with medium heritability and PS2). The GSMN 
had consistently smaller MSE than REML be- 
cause of the influence of the prior distribution 
of the variance component on the posterior 
distribution. These differences would decrease 
as the size of the data files increases. 

Bayesian estimation using GS produces 
more than a simple point estimate. Figure 2 
shows a posterior distribution for the genetic 
variance for one of the simulated data files and 
that use of GS provides an estimate of the 

Journal of Dairy Science Vol. 78. No. 3, 1995 

distribution that can be used to estimate a 
mean, confidence interval, or any other func- 
tion of the distribution. 

GSMN GSMD REML MIVQUE 

Figure 1.  Mean squared errors of genetic variance for 
randomly mated populations (RP). unselected populations 
(UP), and selected populations (SP) using Gibbs sampling 
mean (GSMN), Gibbs sampling mode (GSMD), REML, 
and minimum variance quadratic unbiased estimation 
(MIVQUE) estimates of variance components with herita- 
bility of .3 and 5 generations of matings with 40 animals 
of each sex in each generation. 
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.3 I 

0 3 6 9 12 15 

Figure 2. Example of a posterior distribution for 
genetic variance with mean 0, mode (MD), and 95% 
confidence interval (Cl) estimated using Gibbs sampling 
from a replicate with .3 heritability, population structure 2 
(5 generations of 40 animals of each sex in each genem- 
tion), and males chosen with mass selection. 

The MSE for MIVQUE estimates had 
properties for selected data that were very 
different from those of the GS and REML 
estimates, although mean estimates were quite 
similar. If data results from selection, which is 
likely with field data, MIVQUE, although un- 
biased if all relationship information is in- 
cluded, may not have smaller MSE than 
REML, as theory suggests (19). 

CONCLUSIONS 

All methods for estimation of VC except 
GSMD were empirically unbiased for all data 
because all relationships were included in the 
analyses. The GSMD estimates were biased 
when VC were small and the posterior distri- 
bution was skewed. Selection and data struc- 
ture affected MSE of the estimation methods 
differently. There was little impact of selection 
on the MSE when only one generation of 
selection was used. When multiple generations 
were selected, MSE for GSMN, GSMD, and 
REML decreased compared with that for RP 
and UP, but MSE for MIVQUE increased and 
were largest. These results suggest that 
MIVQUE may not be appropriate for use on 
field data if selection has been practiced. There 
were no patterns for the differences in MSE 
between the RP and UP. Therefore, the change 
in  MSE resulted from the direct effect of selec- 

tion, not from the change in the PS caused by 
selection. The MSE for the GSMN were 
smaller than those from REML because of the 
impact of the prior distribution of the VC. This 
difference will decrease as the amount of data 
used in an analysis increases and the prior 
distributions have less impact. The use of GS 
allows calculation of the point estimates and 
confidence intervals for the posterior distribu- 
tion of the VC, without approximations or use 
of normality assumptions. Therefore, for large 
data files, GS may have advantages over cur- 
rently used methods. 
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