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ABSTRACT

Efficient methods for processing genomic data were 
developed to increase reliability of estimated breeding 
values and to estimate thousands of marker effects si-
multaneously. Algorithms were derived and computer 
programs tested with simulated data for 2,967 bulls 
and 50,000 markers distributed randomly across 30 
chromosomes. Estimation of genomic inbreeding coef-
ficients required accurate estimates of allele frequen-
cies in the base population. Linear model predictions of 
breeding values were computed by 3 equivalent meth-
ods: 1) iteration for individual allele effects followed 
by summation across loci to obtain estimated breeding 
values, 2) selection index including a genomic relation-
ship matrix, and 3) mixed model equations including 
the inverse of genomic relationships. A blend of first- 
and second-order Jacobi iteration using 2 separate 
relaxation factors converged well for allele frequencies 
and effects. Reliability of predicted net merit for young 
bulls was 63% compared with 32% using the tradi-
tional relationship matrix. Nonlinear predictions were 
also computed using iteration on data and nonlinear 
regression on marker deviations; an additional (about 
3%) gain in reliability for young bulls increased average 
reliability to 66%. Computing times increased linearly 
with number of genotypes. Estimation of allele frequen-
cies required 2 processor days, and genomic predictions 
required <1 d per trait, and traits were processed in 
parallel. Information from genotyping was equivalent 
to about 20 daughters with phenotypic records. Actual 
gains may differ because the simulation did not ac-
count for linkage disequilibrium in the base population 
or selection in subsequent generations.
Key words:  genomic selection, mixed model, computer 
program, relationship matrix

INTRODUCTION

Genomic selection increases the rate of genetic 
improvement and reduces cost of progeny testing by 
allowing breeders to preselect animals that inherited 

chromosome segments of greater merit (Meuwissen et 
al., 2001; Schaeffer, 2006). Single nucleotide polymor-
phism (SNP) markers can now cover the genome with 
high density and are inexpensive to obtain. Evalua-
tions based on SNP genotypes can be computed as soon 
as DNA can be obtained, which allows selection in both 
sexes early in life. Application of genomic selection to 
dairy cattle has just begun (de Roos et al., 2007; van der 
Beek, 2007; Guillaume et al., 2008). Potential methods 
and strategies were compared by Meuwissen (2007).

Computer algorithms and programs are needed to 
incorporate genomic data into genetic evaluations and 
to process the rapidly expanding numbers of SNP geno-
types. Previous algorithms for including markers often 
fit effects individually rather than simultaneously or 
fit additional polygenic effects because marker cover-
age of the genome was not yet complete (de Roos et 
al., 2007). Iterative algorithms such as Gauss-Seidel 
and preconditioned conjugate gradient can be used to 
estimate allele effects (Legarra and Misztal, 2008), but 
fewer numerical problems may result from direct in-
version of variance matrices or mixed model equations 
(Lee and van der Werf, 2006). Genomic relationships 
can be included in multitrait derivative-free REML 
programs (Zhang et al., 2007).

Objectives of this research were 1) to develop com-
puter methods to include genomic data in predictions, 
2) to apply the methods to simulated data for actual 
Holstein and Jersey pedigrees, and 3) to estimate gains 
in reliability from genomic predictions.

MATERIALS AND METHODS

Predictions were computed by linear and nonlinear 
systems of equations. The linear predictions assumed 
that all markers contributed equally to genetic varia-
tion (no major genes). The nonlinear (Bayesian) predic-
tions assumed that the prior distribution of marker or 
QTL effects was not normal. Genetic variance may not 
be equal across chromosomes or markers because, for 
example, major genes may exist on some chromosomes. 
The data vector in both linear and nonlinear predic-
tions was modeled as a linear function of the unknown 
effects, but solutions for the unknown effects in the 
nonlinear predictions were nonlinear functions of the 
data vector. Nonlinear predictions may be better than 
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the best linear predictions when data are not normally 
distributed (Henderson, 1963), in this case because of 
major genes.

Linear predictions were computed by selection index 
and by 2 equivalent sets of mixed model equations. One 
model estimated individual marker effects first and 
then summed those as in Meuwissen et al. (2001). The 
other model included a genomic relationship matrix 
in place of the traditional additive genetic relation-
ship matrix (Garrick, 2007; VanRaden, 2007; Zhang et 
al., 2007). Regressions were on genotypes rather than 
haplotypes because haplotyping would increase com-
putation time with little or no gain in accuracy at high 
marker numbers (Calus et al., 2008). Advantages from 
nonlinear predictions and from haplotyping were ex-
pected to be small because the allele effects simulated 
were not large.

Simulation

Data were simulated so that the experimental design 
and analysis methods could be assessed before actual 
genotyping was conducted. The simulated data provid-
ed a test for the computer programs, algorithms, time 
required, and reliability of predictions. The simulated 
genotypes differ from actual genotypes primarily in that 
all loci in the base population were in Hardy-Weinberg 
equilibrium and that selection was not practiced in the 
following generations, which could affect reported cor-
relations and other statistics. Also, the distribution of 
QTL effects used in the simulation may not match the 
biology of actual traits.

Marker and QTL inheritance was simulated for 
50,000 biallelic markers and 100 biallelic QTL on 30 
equal-length chromosomes. Markers and QTL were 
randomly scattered across the genome by assigning the 
position of each by uniform distribution. None of the 
markers directly affected any trait; instead, the QTL 
had effects that were simulated with a normal distri-
bution. Variance of QTL effects thus followed a chi-
square distribution, with the largest effect accounting 
for about 10% of genetic variance. Allele frequencies 
were uniformly distributed between 0 and 1.

Predictions were tested with simulated genotypes for 
2,967 Holstein bulls and 766 Jersey bulls. The Holstein 
bulls included 1,885 bulls born from 1995 through 1997, 
290 ancestor bulls included in computing predictions, 
and 792 younger bulls born from 2001 through 2002 
for testing predictions. The Jersey bulls included 563 
older bulls to compute predictions plus 203 younger 
bulls to test predictions. Genotypes for all known 
ancestors born since 1950 also were simulated in age 
order for a total of 23,105 Holstein and 7,737 Jersey 
cows and bulls. Alleles in the earliest generation were 

in Hardy-Weinberg equilibrium. For subsequent gen-
erations, maternal or paternal chromosome segments 
were inherited with a mean of 1.7 crossovers simulated 
from Poisson distribution and located with uniform 
distribution across the chromosome. For actual data, 
mean crossovers per chromosome probably are closer 
to 1.0.

Genomic predictions can be obtained by combining 
traditional genetic evaluation results with genotypic 
data instead of reprocessing all phenotypic and pedi-
gree data. Variables analogous to deregressed evalu-
ations or daughter yield deviations (DYD) were simu-
lated by adding an independent error to the simulated 
true breeding value. To mimic actual data as closely as 
possible, that DYD error variance was calculated from 
published USDA reliabilities for net merit and from 
reliabilities for parent averages from an actual set of 
bulls that are being genotyped by USDA (Van Tassell 
et al., 2007).

Reliability of net merit for older bulls was obtained 
from May 2003 evaluations when the younger bulls to 
be predicted were just 1 to 2 yr old. Parent averages 
were compared with genomic predictions for ability to 
predict either true breeding values of young bulls or 
simulated DYD with the same reliability as August 
2007 evaluations. Observed reliability of genomic 
predictions was obtained by squaring the correlations 
of estimated with true breeding value. Regressions of 
true breeding value and of DYD on genomic predictions 
also were calculated. When DYD was the dependent 
variable, regressions were weighted by reliability from 
daughters, which was computed as total daughter 
equivalents minus daughter equivalents from parent 
average (VanRaden and Wiggans, 1991).

Genomic data sets include some missing genotypes 
and incorrect genotypes. Fractions of each were arbi-
trarily set to 1%. The number of Holstein genotypes 
generated was about a billion (23,105 animals in 
pedigree file × 50,000 SNP), but only 150 million (2,967 
genotyped bulls × 50,000 SNP) were stored and used 
for genomic prediction. Seven replicates were formed 
by generating 7 independent sets of QTL effects and 
environmental errors. For the Jersey simulation, 10 
replicates were formed. Time required for the Holstein 
simulation was only about 10 min, but initial memory 
usage was high at 8 gigabytes. Memory in the simula-
tion program was reduced to <1 gigabyte by processing 
each chromosome separately and reusing the memory.

Genomic Relationships and Inbreeding

Let M be the matrix that specifies which marker al-
leles each individual inherited. Dimensions of M are 
the number of individuals (n) by the number of loci (m). 
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Equations can include marker information using n × n 
matrix MM′ or m × m matrix M′M (Legarra and Misz-
tal, 2008). If elements of M are set to −1, 0, and 1 for 
the homozygote, heterozygote, and other homozygote, 
respectively, diagonals of MM′ count the number of 
homozygous loci for each individual, and off-diagonals 
measure the number of alleles shared by relatives. In 
contrast, diagonals of M′M count the number of ho-
mozygous individuals for each locus, and off-diagonals 
measure the number of times alleles at different loci 
were inherited by the same individual.

Let the frequency of the second allele at locus i be pi, 
and let P contain allele frequencies expressed as a dif-
ference from 0.5 and multiplied by 2, such that column 
i of P is 2(pi − 0.5). Subtraction of P from M gives Z, 
which sets mean values of the allele effects to 0. Allele 
frequencies in P should be from the unselected base 
population rather than those that occur after selection 
or inbreeding. An earlier or later base population can 
lead to greater or fewer relationships and to more or 
less inbreeding. Subtraction of P gives more credit to 
rare alleles than to common alleles when calculating 
genomic relationships. Also, the genomic inbreeding 
coefficient is greater if the individual is homozygous 
for rare alleles than if homozygous for common alleles.

Genomic relationship matrix G can be obtained by at 
least 3 methods. The first uses the formula  

G
ZZ

=
¢

å -2 (1 )p pi i

.  Division by  2 (1 )å -p pi i  scales  G 

to be analogous to the numerator relationship matrix 
A. The genomic inbreeding coefficient for individual j is 
simply Gjj − 1, and genomic relationships between indi-
viduals j and k, which are analogous to the relationship 
coefficients of Wright (1922), are obtained by dividing 
elements Gjk by square roots of diagonals Gjj and Gkk.

The second method for obtaining G weights markers 
by reciprocals of their expected variance instead of 
summing expectations across loci and then dividing: G 

= ZDZ′, where D is diagonal with  D
m p pii

i i

=
-

1

2 1[ ( )]
.  

That formula was proposed for human genetic studies 
(Leutenegger et al., 2003; Amin et al., 2007).

The third method for obtaining G does not require 
allele frequencies and instead adjusts for mean ho-
mozygosity by regressing MM′ on A to obtain G using 
the model

MM′ = g011′ + g1A + E,

where g0 is the intercept and g1 is the slope. Matrix E 
includes differences of true from expected fractions of 
DNA in common plus measurement error because the 

full DNA sequences were not available and a subset of 
markers was genotyped instead. The regression was fit 
with MM′ as dependent and A as independent variable 
instead of vice versa because A is the expected value of 
G, not vice versa. However, that variable assignment 
required reversing the calculations after fitting the 
regression using the formula

	 G
MM 11

=
¢ - ¢g

g

0

1
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. 	

Estimates of g0 and g1 may not be obvious because 
the dependent and independent variables are matrices 
rather than vectors, but equations can be written with 
summation notation as
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Matrix G is positive semidefinite with the first 2 
methods but can be singular if numbers of loci are 
limited or if 2 individuals have identical genotypes; G 
must be singular if m < n. Identical twins or clones can 
cause singularity even in A. An improved, nonsingular 
matrix Gw can be obtained as the weighted (w) mean, 
wG + (1 − w)A if numbers of markers are limited and 
A is nonsingular. Weights are reciprocals of the error 
variance in measuring true fractions of alleles shared.

Elements of A for noninbred full-sibs are 0.5 and 
have error variance of (0.05)2 for predicting true frac-
tions of shared DNA. An earlier study (VanRaden, 
2007) assumed greater numbers of crossovers and in-
correctly reported a standard deviation of 0.035 instead 
of 0.05. Exact distributions of shared alleles can be 
calculated (Stam, 1980). Within any diploid species, 
the percentage of DNA identical by descent for full-sibs 

is approximately 50
50

2
±

+( )
,

L c
 where  L is the length 

of the genome in Morgans (about 30 for cattle) and c is 
the number of chromosome pairs (30 for cattle).

Elements of G have error variance of  0 125.
.

m
 If minor 

allele frequencies are much less than 0.5,  4 (1 )å -p pi i  

can be substituted for  m to reflect the information from 
markers more precisely. From the preceding algebra, 

	 w

m

=

+
æ
è
ççç

ö
ø
÷÷÷÷

 
0 05

0 05
0 125

2

2

.

.
.

, 	

Journal of Dairy Science Vol. 91 No. 11, 2008

VanRaden4416



and G should get more weight than A if m > 50 and 
nearly all the weight (>0.99) if m > 5,000. Most calcula-
tions in this study used G instead of Gw because m was 
50,000. To test if any weight on A might be beneficial, 
analyses including Gw with w = 0.90, 0.95, and 0.98 
were compared with those with w = 1.

Linear Predictions

If each individual is measured once for a trait and 
the inheritance of all alleles is known, then data vector 
y can be modeled as

y = Xb + Zu + e,

where Xb is the mean and e is a random error vector 
with variance of  Rse

2.  Matrix  R is diagonal with ele-

ments  R
Rii

dau

= - 
1

1,  where  Rdau is the bull’s reli-

ability from daughters with parent information ex-
cluded. Vector u contains the additive genetic effects 
that correspond to allele substitution effects for each 
marker. The sum Zu over all marker loci is assumed to 
equal the vector of breeding values (a).

Although the genotypic coefficient matrix has been 
labeled X in some recent studies (e.g., Meuwissen, 
2007; Legarra and Misztal, 2008), the original labels 
of Henderson (1963) were retained with Xb for fixed 
effects (those with flat priors) and Zu for random ef-
fects (those with informative priors). With repeated 
records or other more complicated models, another 
incidence matrix to assign individuals to records would 
be required instead of the identity matrix implied here. 
In the current study, y included 1 daughter deviation 
variable for each bull.

Three different approaches that provide equivalent 
predictions were used to evaluate genotyped individu-
als with and without phenotypes. Mixed model esti-
mates of u ( û ) were solved by iteration on data (Schaef-
fer and Kennedy, 1986); in this case genotypic data. 
Scalar λ is defined as the ratio s se u

2 2 ,  which equals 

the sum across marker loci  2 (1 )å -p pi i  times the ra-

tio  s se a
2 2 ,  where  sa

2  is total genetic variance. When 
phenotypic records are processed directly, λ is the ratio 
of error to additive genetic variance as usual. In this 
study,  R accounts for heritability and differences in 
daughter numbers in this study so that  s se a

2 2  simpli-
fies to 1. The EBV ( â ) were obtained as Zû , and the 
resulting equations were

	 ˆ ( ) ( ˆ).a Z Z R Z I Z R y Xb= ¢ + ¢ -- - -1 1 1λλ 	 [1]

The identity matrix I results from an assumption that 
marker effects in a large, randomly mating, unselected 
base population are uncorrelated. That assumption is 
true for the simulated QTL effects, but the markers 
themselves have only indirect effects by tracing the 
inheritance of linked QTL. Marker and QTL alleles 
may not be in equilibrium in the base population, and 
marker regressions are fit across rather than within 
families.

Selection index equations predict â  directly using 
genomic relationship matrix  G, which is computed as 

ZZ¢

å -2 (1 )p pi i

.  Selection index equations are construct-

ed as the covariance of  y and a multiplied by the in-
verse of the variance of y multiplied by deviation of y 
from  Xb̂  or
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	 [2]

Estimates of û  could also be obtained if needed us-
ing the selection index equations by substituting  Z′ for 
the leftmost G in [2] and then dividing by  2 (1 ).å -p pi i  

This shows that  â  is the sum  Zû  over all alleles that 
the individual inherited. Selection index and mixed 
model equations provide the same estimates of  â if the 
same estimates of Xb̂ are used (Henderson, 1963). 
Thus, [1] and [2] should be identical in many genomic 
analyses because DYD or deregressed evaluations are 
the data source and the fixed effects already have been 
removed.

A third solution strategy presented by Garrick (2007) 
could be more efficient than selection index because G 
can be inverted just once and then additional traits 
with differing heritability or R processed using itera-
tion: 
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æ

è

çççççç

ö

ø

÷÷÷÷÷÷

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

-- -

-

-1 1
2

2

1

1s

s
e

a

	 [3]

Matrix G may be singular, for example, if the number 
of markers does not exceed the number of individuals 
genotyped.

A main goal is to predict merit for individuals from 
genotypes before their phenotypes are measured, but 
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different procedures were required when [1], [2], or [3] 
were used. When [1] was used, predictions for younger 
individuals were computed as Z u2ˆ,  with  Z2 constructed 
from their genotypes. When [2] was used, predictions 
were computed by replacing the leftmost G in [2] by the 
genomic covariance matrix C constructed as  

Z Z2 ¢

å -2 (1 )p pi i

.  When [3] was used, predictions were 

computed by  CG a- ,̂1  which is a genomic regression on 
EBV of individuals with phenotypes.

Expected reliabilities for â  were computed from the 
matrices in [2] and [3] but were not computed from [1] 
because the 50,000 × 50,000 dense matrix was too large 
to invert. From [2], reliabilities were obtained from di-
agonals of  
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for individuals with phenotypes and from 
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for those without. From [3], reliabilities were obtained 
similarly from
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Genetic bases often set the mean evaluations of some 
recent group of cows to 0. Estimation of the genetic 
base is accomplished by 2 equivalent formulas that 
depend on whether equations are solved by inversion 
or iteration. With inversion, inverse of the variance of 
y (V−1) is available so that the mean of b̂  can be ob-
tained directly as (X′V−1X)−1(X′V−1y), assuming that 
those equations are full rank. With iteration, updated 
EBV are available in each round so that the mean of y 

can be estimated iteratively as X R X X R y a′′ ′′-
-

-( ) -( )1
1

1 ˆ .  
With those algorithms, genomic predictions  â  are 

solved as deviations from a genetic base, and then the 
genetic base is added back to the predictions.

Nonlinear Predictions

For nonlinear predictions, a genetic variance compo-
nent can be estimated for each marker, marker bracket, 
or haplotype (Meuwissen et al., 2001). Alternatively, 
markers with smaller effects can be regressed further 
toward 0 and markers with larger effects regressed less 
to account for the nonnormal prior distribution. Let 
marker deviations ( d̂ ) be defined as

	 ˆ ˆ ˆ ˆ.d Z R Z Z R y Xb Zu u= ( )é
ëê

ù
ûú

- -( )é
ëê

ù
ûú
+-

-
-diag ′′ ′′1

1
1 	 [4]

Addition of û  is required because subtraction of  Zû  in 
[4] removes not only off-diagonal terms in  ¢ -Z R Z1  but 
also the diagonal. Linear model solutions are obtained 
using linear regression on  d̂ :

	 ˆ ˆ.u Z R Z I Z R Z d= ( )+é
ëê

ù
ûú ( )-
-

-diag diag′′ λλ ′′1
1

1 	

The optimal regression is nonlinear if distribution of 
d̂  is not normal. Of the total number of markers (m), 
only a subset (q) may be associated with QTL. If mark-
er-QTL associations are not known a priori, distribu-
tion of d̂  is a mixture of 2 distributions. Elements of  d̂  

have a  1- q

m
 prior probability of containing only error 

variance and a  q

m
 prior probability of containing both 

error and QTL variance. Two normal density functions 
(ferr and fQTL+err) were evaluated for each marker devia-
tion in d̂  in each round of iteration to obtain converged 
posterior probabilities. To simplify calculations, marker 
solutions were first standardized by dividing  û  by 

their standard deviations  ˆ ˆ
.

¢æ

è
çççç

ö

ø
÷÷÷÷

u u
m

 Then, ferr was the 

standard normal density with a mean of 0 and variance 
of 1. Function fQTL+err had greater variance calculated 
as  m q ,  the reciprocal of the proportion of loci with 
effects. For extreme marker effects, computation of 
normal densities resulted in underflow, which was 
avoided by setting error density to zero for marker de-
viations of >15 standard deviations.

Nonlinear and linear regressions on SNP marker 
deviations are shown in Figure 1. Nonlinear predic-
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tion A assumed that all markers had effects but with 
a simple, heavy-tailed distribution generated from a 
normal variable divided by 1.25abs(s–2), where s is the 
number of standard deviations from the mean and 1.25 
determines departure from normality. Instead of using 
a constant λ for all markers as in [1], nonlinear predic-
tion A used individual λi for each locus, computed as λi 
= λ/1.25abs(s–2).

Nonlinear prediction B used:

	 λ λi
q

m

q

m
 = + -
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è
çççç
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ú
ú
. 	 [5]

Several markers may be needed for each actual QTL; 
therefore, the optimal choice for q was about 700 in-
stead of the 100 QTL simulated. Nonlinear predictions 
A and B are analogous but not identical to Bayesian A 
and B methods of Meuwissen et al. (2001), and other 
prior distributions could fit actual data better. In this 
research, QTL effects were simulated with a normal 
distribution, and marker effects were estimated by 
iteration using an equation analogous to [1] but substi-
tuting λi from equation [5].

Computation

Allele frequencies in the base (founder) population 
were estimated with a linear model that solves for gene 
content of nongenotyped ancestors and descendants us-
ing pedigrees (Gengler et al., 2007). The known geno-
types are treated as data, and the unknown genotypes 
of relatives are estimated using the inverse of the tra-
ditional relationship matrix and standard mixed model 

equations. Calculations are easy but not ideal because 
linear algebra is used instead of nonlinear probabili-
ties. Equations without groups for unknown parents 
were presented by Gengler et al. (2007), and they also 
described and tested equations that included several 
groups. The current research included only 1 unknown-
parent group because pedigrees were extremely com-
plete and the goal was to estimate frequencies for the 
same population as the inbreeding base (1960).

Simple allele frequencies were also obtained as 
means of only the known genotypes. In the simple 
frequency estimates, summation was only over non-
missing genotypes so that missing genotypes did not 
contribute. Genomic predictions and inbreeding coef-
ficients were computed using the simple estimate, the 
base population estimate, and also the true base fre-
quencies to determine how sensitive the results were to 
different allele frequencies. Frequency estimation can 
bias the genomic inbreeding coefficients (Leutenegger 
et al., 2003).

Jacobi iteration was used in this study, but other 
methods may converge faster. First-order Jacobi itera-
tion performed reasonably well with small data sets but 
converged too slowly with large data sets and unbal-
anced allele frequencies. A blend of first- and second-
order Jacobi iteration performed better but required 
setting 2 relaxation factors.

Let the solution before relaxation from the current 
round be labeled uc, and let solutions after relaxation 
from the previous 2 rounds be u1 and u2. The solution 
after relaxation in the current round u0 was then com-
puted as

u0 = u1 + relax1(uc − u1) + relax2(u1 − u2),

where relax1 and relax2 are relaxation factors. Optimal 
relaxation factors for this blend of first- and second-
order Jacobi iteration were obtained by trial and error. 
The algorithms to estimate allele frequencies and al-
lele effects both used this iterative technique, but the 
optimum relaxation factors differed.

Efficiency was greatly increased by summing ele-
ments of ¢ -Z R Zu1 ˆ  once per round of iteration and ob-
taining the off-diagonal sums for each row as

	 ¢ - ¢( )- -Z R Zu Z R Z u1 1ˆ ˆ.diag 	 [6]

As genotypes are obtained, rows of Z are multiplied by  
ˆ.u  Then, right-hand sides for each marker [elements of  
Z R y Xb′′ - -( )1 ˆ ] are adjusted for off-diagonal elements 
by subtracting the diagonal from the sum of all ele-
ments as in [6]. That procedure reduced computing 
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costs from quadratic with number of markers (Meuwis-
sen et al., 2001) to linear. Similar computing strategies 
were discovered independently by Janss and de Jong 
(1999) and Legarra and Misztal (2008). As compared 
with the iterative methods of Legarra and Misztal 
(2008), the present algorithm requires much less 
memory by reading Z once per iteration instead of load-
ing Z into memory, uses estimated allele frequencies 
instead of 0.5 to set coefficients of Z, accounts for miss-
ing genotypes, weights observations by including R, 
and is extended to nonlinear models.

Missing genotypes could be set to the gene content 
estimated from the algorithm of Gengler et al. (2007) or 
from a similar procedure. That approach would require 
recoding the data with fractional values instead of the 
simpler 0, 1, and 2 for known values and 5 to indicate 
unknown. Because ≤1% of genotypes were expected to 
be missing, simple genotype coding was retained for 
this study, but coefficients of Z were set to 0, which 
substitutes the mean allele frequency of the population 
for missing values. Other elements of Z were standard-
ized to account for each animal’s proportion of missing 
genotypes. That standardization was accomplished by 
replacing Z with WZ, where W is diagonal with

	 Wjj
p p

p p

i i

i i

=
å -

å -

(1  over all loci

(1  over only nonmissing 

)

) lloci
. 	

Elements of WZ for the 3 genotypes were then −2pi, 1 
− 2pi, and 2 − 2pi, each divided by Wjj. That adjustment 

gave genomic relationship matrix WZZ W¢

å -2p pi i(1 )
 an ex-

pected value of  A, the traditional relationship matrix, 
when some genotypes were missing. Equations reduce 
to those of VanRaden (2007) when no genotypes are 
missing.

RESULTS AND DISCUSSION

Genomic predictions from several methods were all af-
fordable, and timing tests on simulated data for 50,000 
markers revealed that predictions for several traits of 
3,000 bulls can be computed within a week. Genomic 
predictions offered much greater reliability for young 
animals than did traditional parent averages, even for 
traits affected by 100 QTL with unknown location.

Estimation of allele frequencies in the base popula-
tion and gene content for 23,105 Holsteins in the pedi-
gree file required about 400 iterations to converge to 
5 digits of accuracy. Total time was 2 processor days, 
but actual clock time was reduced by processing loci on 

separate chromosomes in parallel. Time required for 
frequency estimation was proportional to the length 
of the pedigree file and number of markers. Optimal 
relaxation factors for the blended Jacobi iteration were 
0.60 for the first factor and 0.88 for the second factor 
when used in the algorithm of Gengler et al. (2007). 
Simple frequency estimates required cycling through 
the known genotypes just once and <1 min of process-
ing.

True allele frequencies were correlated with estimat-
ed frequencies in the base population by 0.98, but only 
by 0.94 with simple frequency estimates from the cur-
rent population. The 2 estimates were correlated with 
each other by 0.97. Mean for base frequency estimates 
was 0.50 with a standard deviation of 0.27 compared 
with a mean of 0.49 and standard deviation of 0.30 for 
simple frequency estimates, both of which compared 
well with the mean of 0.50 and standard deviation of 
0.29 for true allele frequencies simulated as uniformly 
distributed between 0 and 1. The largest difference be-
tween base frequency and simple frequency estimates 
was 0.41.

Genomic inbreeding coefficients from the first method 
for obtaining G, which weights summed allele effects 
by the sum of their expected variance, were more pre-
cise when base frequency rather than simple frequency 
estimates were used. Correlations between pedigree 
inbreeding coefficients from A and genomic inbreeding 
coefficients from G for the older Holstein bulls were 
0.74 using true allele frequencies and 0.68 using esti-
mates of base frequencies, but only 0.12 using simple 
allele frequency estimates. Corresponding correlations 
for the younger bulls were 0.66, 0.63, and 0.40. Ge-
nomic inbreeding coefficients were biased downward 
using either estimator of frequency. The mean of 7% 
was reasonable using true frequencies but was −4% 
with base frequency estimates and −2% with simple 
frequency estimates compared with 5% for traditional 
inbreeding coefficients of Holsteins from pedigree. 
Complete statistics including standard deviations and 
Jersey inbreeding coefficients are in Tables 1 and 2.

Inbreeding coefficients in G were less precise if G 
was estimated by weighting marker loci by recipro-
cals of their expected variance (second method) and 
more precise if G was obtained by adjusting for mean 
homozygosity by regression on A (third method) com-
pared with the first method. Correlations of genomic 
inbreeding coefficients from the second method with 
pedigree inbreeding coefficients were about 0.06 lower 
than corresponding correlations for the first method 
when base allele frequencies were used. For the third 
method, which does not require allele frequencies, cor-
responding correlations were about 0.06 greater than 
for the first method. The first and third method had 
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nearly equal correlations when the first method used 
true rather than estimated base frequencies.

Subtraction of allele frequencies and weighting 
by variance may have theoretical appeal, but results 
from simulation indicated that simple counts of allele 
sharing and allele homozygosity can provide accurate 
measures of relationship and inbreeding. Comparisons 
using real data could give different results for the 3 
methods because alleles in the base population may 
not be in equilibrium.

Construction of the genomic relationship matrix 
required 9 h for Holsteins and 1.5 h for Jerseys. Time 
increased by number of markers multiplied by num-
ber of bulls squared. Inversion of the matrix required 
about 12 min for Holsteins and 20 s for Jerseys. Time 
increased by number of bulls cubed. With that algo-
rithm, traits with similar reliability such as milk, fat, 
and protein could be processed together with almost no 
additional cost.

Iteration on genotypic data took 1,000 rounds and 
16 h to reach convergence for just 1 trait, but the cost 
for that algorithm did not increase as quickly as the 
cost of forming and inverting G. Time increased by 
number of iterations multiplied by number of markers 
multiplied by number of bulls multiplied by number 

of traits. In practice, clock times can be decreased by 
processing different traits in parallel and by using pre-
viously converged estimates of allele effects as starting 
values when additional genotypes are added. Reread-
ing the genotypes increased time by 10% but decreased 
memory by >90% compared with storing the genotypes 
in memory. Optimal relaxation factors for the blended 
Jacobi iteration were 0.0002 for the first factor and 
0.90 for the second factor. The first factor had greater 
optimums when numbers of markers were lower.

Predictions from iteration on data were correlated 
by 0.997 with those from direct inversion, which indi-
cated agreement of [1] and [2]. With smaller data sets 
and more iteration, perfect correlations were achieved 
among predictions from [1], [2], and [3].

Reliability comparisons are in Table 3 and are 
means across replicates. Reliability averaged 0.66 for 
nonlinear predictions and 0.63 for linear predictions 
versus 0.32 for parent average for net merit of young 
Holstein bulls. Corresponding accuracies of selection 
obtained as square roots of those values were 0.81, 
0.79, and 0.56. Thus, linear genomic predictions had 
reliabilities that were 0.31 greater than reliability for 
parent average for the younger Holstein bulls and 0.19 
greater for the younger Jersey bulls. Simulated gains 
from genomic selection are much larger than estimates 
of Guillaume et al. (2008) because many more markers 
are now available.

Nonlinear predictions had a slight advantage over 
linear predictions (Table 3) of 0.04 for young Holstein 
bulls and 0.01 for young Jersey bulls. Reliability ob-
tained from direct inversion of linear mixed model 
equations averaged 0.58, which is in reasonable agree-
ment with the 0.63 obtained from the squared corre-
lation of linear predictions with true breeding values. 
Reliability of older bulls and ancestors averaged 0.91 
for predictions from both linear and nonlinear genomic 
models versus 0.90 from use of the traditional animal-
model relationship matrix. Gains in reliability for the 
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Table 1. Correlations of pedigree with genomic inbreeding (F) 
coefficients computed with true or estimated allele frequencies 

Breed Birth year

Allele frequencies used in genomic F

True1 Base2 Simple3

Holstein <2000 0.66 0.63 0.40
2001 to 2002 0.74 0.68 0.12

Jersey <2000 0.78 0.66 −0.26
2001 to 2002 0.81 0.75 −0.28

1True frequencies in the base population.
2Estimated frequencies in the base population.
3Simple frequencies estimated by counting alleles in genotyped 
bulls.

Table 2. Means and SD of pedigree inbreeding (F) and genomic inbreeding coefficients computed with true 
or estimated allele frequencies 

Breed Birth year

Pedigree F (%)

Genomic F (%) using allele frequencies

True1 Base2 Simple3

Mean SD Mean SD Mean SD Mean SD

Holstein <2000 4.6 2.4 6.7 3.9 −4.4 3.4 −2.1 5.4
2001 to 2002 5.3 1.8 7.6 3.5 −3.6 3.0 −1.9 3.5

Jersey <2000 5.1 3.4 7.2 4.8 0.0 4.0 −3.3 8.4
2001 to 2002 7.1 2.7 9.2 4.3 2.1 3.7 −1.3 6.3

1True frequencies in the base population.
2Estimated frequencies in the base population.
3Simple frequencies estimated by counting alleles in genotyped bulls.



older bulls were small (about 0.01) because their re-
liabilities already were high and because the largest 
of the simulated QTL did not have very large effects. 
Gains from actual data could differ because of more or 
fewer QTL with non-normal distribution.

Reliability of predictions increased slightly for Hol-
steins when estimates of base allele frequency replaced 
simple estimates and nearly matched levels obtained 
when true allele frequencies were used. With iteration 
and coefficients of Z set to 0.5 and −0.5 as in Legarra and 
Misztal (2008), the system of equations converged more 
quickly, but predictions were less accurate. Realized 
reliabilities were about 0.007 greater for both younger 
and older Holstein bulls when simple estimates of al-
lele frequency were used than when coefficients of 0.5 
were used; corresponding gains for Jerseys were 0.040 
and 0.003. With inversion, accuracy of predictions was 
similar to the use of true allele frequencies if elements 
of G were rescaled using

	
MM 11¢ - ¢g

g

0

1

( )
. 	

Thus, rescaling of G or of variance ratios seems useful, 
but predictions are not identical to those obtained by 
subtracting allele frequencies because elements of G 
are correlated by <1.

Matrix G was always nonsingular in this study be-
cause m was much larger than n, allowing use of equa-
tion [3], which requires G−1. Reliability of predictions 
increased very slightly when Gw replaced G, with max-
imum increase of only 0.0002 for w = 0.95. Reliability 
was lower for w = 0.90 than for w = 1. Thus, analyses 
may benefit slightly by including a small weight (5%) 
on traditional relationships.

Linear and nonlinear genomic predictions for 
younger Holstein bulls were correlated by 0.97 and had 
nearly equal means. The standard deviation was about 
1.07 times larger for nonlinear predictions, which cor-
responds to the 0.04 greater reliability. Regressions of 

true breeding values on linear predictions were 0.99 
± 0.05 and on nonlinear predictions were 0.95 ± 0.05, 
only slightly less than the desired value of 1.0. Regres-
sions of DYD on genomic predictions were similar, but 
with slightly larger standard error (0.06). Advantages 
of using base rather than simple estimates of allele 
frequency were small. Those extra gains in reliability 
were <0.01 for Holsteins and Jerseys.

Gains in reliability were converted to daughter 
equivalents by assuming a heritability of 20%, which 
is approximately the weighted mean of heritabilities 
of traits included in the net merit index (VanRaden 
and Multi-State Project S-1008, 2006). Total daughter 
equivalents equal daughter equivalents from parents, 
progeny, and own records (if available) plus additional 
daughter equivalents from genotyping. For both young 
and old bulls, information gained from genotyping 
was equivalent to including records from about 20 ad-
ditional daughters. If similar gains occur with actual 
data, genomic evaluations should be released for young 
animals and for bulls with daughters and for cows with 
records instead of the traditional evaluations computed 
from only pedigree and phenotypic data. New methods 
are needed to explain genomic predictions (VanRaden 
and Tooker, 2007) because few scientists or breeders 
yet have the training or experience to understand how 
the new technology works.

During the review process for this study, the pro-
grams tested with simulated data were applied to 
actual genotypes of the Holstein bulls, and genomic 
predictions of merit were provided to North American 
breeders in April 2008. Primary advantages of simu-
lated data were that true breeding values were known 
and statistical methods could be compared before ac-
tual data became available.

CONCLUSIONS

Computational methods for including genotypic data 
were developed and tested using simulation. Genomic 
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Table 3. Reliabilities of genomic predictions computed with true or estimated allele frequencies 

Breed Birth year

Reliability

Animal 
model

Linear genomic model with frequencies
Nonlinear 

model2True1 Base2 Simple3 0.5

Holstein <2000 0.896 0.915 0.913 0.912 0.905 0.913
2001 to 2002 0.319 0.628 0.628 0.626 0.620 0.663

Jersey <2000 0.797 0.817 0.817 0.817 0.814 0.816
2001 to 2002 0.163 0.354 0.354 0.355 0.315 0.368

1True frequencies in the base population.
2Estimated frequencies in the base population.
3Simple frequencies estimated by counting alleles in genotyped bulls.



inbreeding coefficients required accurate estimates of 
allele frequencies in the base population; predictions 
of genetic merit were much less sensitive to allele 
frequency estimates. Genomic inbreeding and relation-
ship coefficients that did not require allele frequencies 
were also obtained from simple counts of homozygous 
loci and alleles shared. Scaling these to match pedigree 
inbreeding and relationships was achieved by regres-
sion.

Three equivalent linear predictions were derived, 
each with different computational advantages. A 
nonlinear prediction produced slightly greater correla-
tions with true breeding values and was solved using 
iteration on genotypic data and nonlinear regression 
on marker deviations. A blend of first- and second-
order Jacobi iteration achieved reasonable convergence 
for estimating allele frequencies and effects, but other 
algorithms could be faster. Iterative algorithms are 
preferred because time increases linearly with number 
of genotypes. However, calculation of individual reli-
abilities required inverting mixed model equations that 
included genomic relationships. Calculation of predic-
tions and reliabilities may require using more than one 
set of equations.

Tests on simulated data indicated that reliability for 
young animals could be >60% versus 32% from parent 
average. Genotypic data may add information worth 
about 20 daughter equivalents, and benefits should 
increase over time as more relatives are genotyped. 
However, actual genomic reliabilities may be affected 
by linkage disequilibrium in the base population and 
by subsequent selection, neither of which were simu-
lated.
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