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  ABSTRACT 

  The availability of dense single nucleotide polymor-
phism (SNP) genotypes for dairy cattle has created 
exciting research opportunities and revolutionized prac-
tical breeding programs. Broader application of this 
technology will lead to situations in which genotypes 
from different low-, medium-, or high-density platforms 
must be combined. In this case, missing SNP genotypes 
can be imputed using family- or population-based al-
gorithms. Our objective was to evaluate the accuracy 
of imputation in Jersey cattle, using reference panels 
comprising 2,542 animals with 43,385 SNP genotypes 
and study samples of 604 animals for which genotypes 
were available for 1, 2, 5, 10, 20, 40, or 80% of loci. 
Two population-based algorithms, fastPHASE 1.2 (P. 
Scheet and M. Stevens; University of Washington Tech-
Transfer Digital Ventures Program, Seattle, WA) and 
IMPUTE 2.0 (B. Howie and J. Marchini; Department 
of Statistics, University of Oxford, UK), were used to 
impute genotypes on Bos taurus autosomes 1, 15, and 
28. The mean proportion of genotypes imputed cor-
rectly ranged from 0.659 to 0.801 when 1 to 2% of geno-
types were available in the study samples, from 0.733 
to 0.964 when 5 to 20% of genotypes were available, 
and from 0.896 to 0.995 when 40 to 80% of genotypes 
were available. In the absence of pedigrees or genotypes 
of close relatives, the accuracy of imputation may be 
modest (generally <0.80) when low-density platforms 
with fewer than 1,000 SNP are used, but population-
based algorithms can provide reasonably good accuracy 
(0.80 to 0.95) when medium-density platforms of 2,000 
to 4,000 SNP are used in conjunction with high-density 
genotypes (e.g., >40,000 SNP) from a reference popu-
lation. Accurate imputation of high-density genotypes 
from inexpensive low- or medium-density platforms 

could greatly enhance the efficiency of whole-genome 
selection programs in dairy cattle. 
  Key words:    single nucleotide polymorphism ,  imputa-
tion ,  cattle 

  INTRODUCTION 

  The recent development of high-throughput systems 
for genotyping SNP in cattle and other food animal 
species has led to an extraordinary amount of research 
activity, particularly in areas such as whole-genome se-
lection of livestock and genome-wide association studies 
for detection of quantitative trait loci (Van Tassell et 
al., 2008). Tens of thousands of dairy cattle have been 
genotyped using the BovineSNP50 BeadChip (Illumina 
Inc., San Diego, CA) or related platforms, and the re-
sulting genomic data have already been incorporated 
into national genetic evaluation systems for routine 
prediction of the genetic merit of selection candidates 
(Wiggans et al., 2009). 

  To date, most genotyping in North American dairy 
cattle has been on a common platform, namely the 
aforementioned BovineSNP50 BeadChip, and gains in 
reliability due to incorporation of the resulting genomic 
information into practical breeding programs have been 
impressive (VanRaden et al., 2009). However, it is likely 
that other options will become available in the near 
future, such as ultra-high-density platforms with more 
than 500,000 SNP and specialized low-density plat-
forms with 300 to 3,000 selected or equally spaced SNP. 
Recently, Weigel et al. (2009) reported that low-density 
genotyping of young Holstein bulls for 300 to 2,000 se-
lected SNP provided direct genomic values for Lifetime 
Net Merit that were moderately correlated (0.43 to 
0.57) with the breeding values obtained from progeny 
testing and highly correlated (0.63 to 0.90) with direct 
genomic values derived from the BovineSNP50 Bead-
Chip. However, a limitation of low-density genotyping 
with selected SNP is that such platforms will be breed 
and trait specific. For this reason, Habier et al. (2009) 
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suggested genotyping selection candidates with a low-
density platform comprising equally spaced SNP and 
subsequently imputing genotypes for the remaining 
SNP using high-density genotypes of their parents. The 
authors noted that this approach would provide not 
only low-density platforms that are applicable across 
traits and breeds, but also platforms that are robust 
to the number of loci affecting individual traits and 
the nuances of the statistical methods used for estimat-
ing SNP effects. Overall, it seems that imputation of 
missing genotypes will be necessary for cost-effective, 
widespread implementation of whole-genome selection, 
regardless of whether breeding values are derived from 
models in which SNP effects are estimated directly 
(e.g., Meuwissen et al., 2001) or from models in which 
SNP genotypes are used to describe the covariance 
structure between selection candidates (e.g., Gianola 
and van Kaam, 2008).

Algorithms for constructing haplotypes and imputing 
missing genotypes generally fall into 2 categories (Li 
and Li, 2007). The first category of methods, which 
are well suited for natural populations, includes pop-
ulation-based algorithms that typically assume that a 
large group of individuals without known relationships 
have been genotyped (e.g., Scheet and Stephens, 2006; 
Howie et al., 2009). The second category of methods, 
which are well suited for case-control studies, includes 
family-based algorithms that generally assume that 
many small, nuclear families exist in which both parents 
and at least one offspring have been genotyped (e.g., Li 
and Jiang, 2003; Zhang and Zhao, 2006). The structure 
of modern dairy cattle breeding populations matches 
neither of these descriptions, because the populations 
comprise thousands or millions of individuals related 
to each other in a complex, multi-generational man-
ner. Furthermore, vast differences in the reproductive 
capacity of males and females and, hence, in the eco-
nomic worth of selected candidate parents, ensures that 
expensive high-density genotyping or DNA sequencing 
technologies will be used more widely in males. Thus, 
one cannot assume that detailed genotypic information 
will be available for both parents of every selection 
candidate. Last, if low-density genotyping is broadly 
implemented on commercial dairy farms for routine 
activities such as selection of replacement heifers or 
development of genotype-guided mating recommenda-
tions, situations in which both parents lack genotypic 
information may become commonplace.

The objective of the present study was to evaluate 
the accuracy that could be achieved when predicting 
missing SNP genotypes of study samples of Jersey 
cattle from the high-density genotypes of reference 
animals of the same breed using publicly available, 
population-based imputation algorithms that require 

neither pedigrees nor genotyped parents. As such, the 
realized accuracy of imputation in the present study 
should be representative of the lower bound that 
dairy producers and breeding companies may achieve 
in practice when imputing genotypes of animals that 
may lack pedigree information or high-density parental 
genotypes. Specifically, we sought to evaluate scenarios 
that may arise in practical breeding programs when 
selection candidates are genotyped using inexpensive 
low- or medium-density platforms.

MATERIALS AND METHODS

Genotypes of 3,146 Jersey dairy cattle (2,656 males 
and 490 females) from 5 countries were provided by 
the USDA-ARS Animal Improvement Programs Labo-
ratory (Beltsville, MD) and consisted of 43,385 SNP 
markers distributed across the 29 Bos taurus autosomes 
and the X chromosome. These SNP represent the sub-
set of markers on the BovineSNP50 BeadChip that are 
used for routine genomic evaluation of US dairy cattle, 
after removal of SNP with a call rate of <90%, greater 
than 1% parent-progeny conflicts, complete linkage 
disequilibrium (LD) with an adjacent SNP, or minor 
allele frequency (MAF) of <1% in each of the Holstein, 
Jersey, and Brown Swiss breeds (Wiggans et al., 2009). 
Genotypes at each locus were coded as 0 (homozygous 
for allele B), 1 (heterozygous), 2 (homozygous for allele 
A), or 5 (missing). After the aforementioned edits, the 
mean percentage of missing genotypes (averaged across 
all 43,385 loci) was 0.31%.

Because the objective of this study was to evaluate 
the accuracy of imputed genotypes in subsets of ani-
mals genotyped using low- or medium-density genotyp-
ing platforms, the population was divided into study 
samples and reference panels in the following manner. 
The reference panels consisted of animals that were 
genotyped for all 43,385 SNP, whereas in the study 
samples we randomly masked genotypes for 20, 60, 80, 
90, 95, 98, or 99% of the SNP loci. The purpose was to 
mimic a situation in which animals in the study samples 
were genotyped using a low- or medium-density plat-
form comprising 80, 40, 20, 10, 5, 2, or 1% of SNP on 
the high-density platform, respectively. Subsequently, 
high-density SNP genotypes of animals in the reference 
panels were used in conjunction with low- or medium-
density SNP genotypes of animals in the study samples 
to infer masked genotypes of the latter.

Reference panels and study samples were constructed 
in 2 ways, as shown in Table 1. In one scenario, a subset 
of 2,542 animals that were born between 1953 and 2006 
was used as the reference panel, and a subset of 604 
animals that were born between 2007 and 2009 was 
used as the study sample. This approach was analogous 
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to the experimental design used by VanRaden et al. 
(2009) to evaluate the ability of genomic breeding val-
ues to predict the results of progeny testing in the next 
generation. In the present study, it mimics a situation 
in which young animals are genotyped with a low- or 
medium-density assay, and missing SNP are inferred 
from high-density genotypes of their ancestors. In the 
second scenario, a random subset of 2,542 animals in the 
population was used as the reference panel, regardless 
of year of birth, and the remaining 604 animals were 
used as the study sample. This approach, which may 
be unrealistic in practical breeding programs, mimics a 
situation in which the decision of whether to genotype 
a particular animal using a high- or low-density plat-
form is made at random. In both study samples, most 
animals had a genotyped sire, maternal grandsire, and 
paternal grandsire in the reference panel, as shown in 
Table 1. However, few animals in either study sample 
had a genotyped dam, maternal granddam, or paternal 
granddam in the reference panel. A greater proportion 
of animals in the future study sample had genotyped 

ancestors in the reference panel; conversely, some ani-
mals in the random study sample had genotyped sons, 
daughters, grandsons, or granddaughters in the refer-
ence panel.

To evaluate the accuracy of imputed genotypes, 3 
chromosomes were chosen: BTA1, BTA15, and BTA28. 
These corresponded to the maximum (2,748), median 
(1,399), and minimum (802) number of SNP per chro-
mosome, respectively, on the BovineSNP50 BeadChip. 
After removal of SNP with unknown physical position 
on the chromosome based on the UMD2 assembly of 
B. taurus (Zimin et al., 2009), a total of 2,693, 1,377, 
and 795 SNP remained on BTA1, BTA15, and BTA28, 
respectively, for animals in the reference panels. After 
randomly masking from 20 to 99% of SNP on these 
chromosomes for animals in the study samples, the 
number of available SNP from which to impute masked 
genotypes ranged from 27 to 2,154 for BTA1, from 14 
to 1,102 for BTA15, and from 8 to 636 for BTA28.

For reference purposes, masked genotypes were im-
puted by random assignment of genotypes of 0, 1, or 
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Table 1. Summary of data from the US Jersey cattle population used in the present study 

Item

Random Future

Reference panel Study sample Reference panel Study sample

Total animals 2,542 604 2,542 604
Sex
 Male 2,153 503 2,173 483
 Female 389 101 369 121
Year of birth
 1953–1958 4 1 5 0
 1959–1964 5 0 5 0
 1965–1970 16 1 17 0
 1971–1976 35 8 43 0
 1977–1982 55 8 63 0
 1983–1988 175 27 202 0
 1989–1994 452 106 558 0
 1995–2000 599 145 744 0
 2001–2006 733 172 905 0
 2007–2009 468 136 0 604
Country of registration
 Australia 18 0 16 2
 Canada 94 34 112 16
 Denmark 8 2 10 0
 New Zealand 2 1 3 0
 United States 2,420 567 2,401 586
Ancestors in reference panel
 Sire  405  595
 Paternal grandsire  426  561
 Maternal grandsire  432  580
 Dam  85  127
 Paternal granddam  119  199
 Maternal granddam  56  81
Offspring in reference panel
 Son(s)  53  0
 Paternal grandson(s)  18  0
 Maternal grandson(s)  48  0
 Daughter(s)  40  0
 Paternal granddaughter(s)  10  0
 Maternal granddaughter(s)  14  0



2 to masked loci assuming that the probability of a 
particular genotype was equal to its expectation under 
Hardy-Weinberg equilibrium with p and q equal to ob-
served allele frequencies at each locus in the reference 
panels.

Subsequently, masked genotypes were imputed using 
the population-based haplotype clustering algorithm of 
Scheet and Stephens (2006), which was implemented 
via the fastPHASE version 1.2 software (University of 
Washington TechTransfer Digital Ventures Program, 
Seattle, WA). This method assumes that, over short 
regions of a chromosome, haplotypes of individuals 
within the population will tend to cluster into groups. 
Because of recombination, groups of haplotypes that 
are similar in one region of a chromosome will differ 
in another region, according to the rate of decay in 
LD. Therefore, this method allows membership in 
haplotype clusters to change as one moves along the 
chromosome, using a hidden Markov model (HMM) 
to describe each observed haplotype as a mosaic of a 
small number of common haplotypes. This approach is 
more flexible than block-based methods that divide the 
genome into regions of high LD and then allow changes 
in cluster membership to occur only at the boundaries 
of these blocks, such as the method of Kimmel and 
Shamir (2005), which underlies the GERBIL software, 
or the method of Greenspan and Geiger (2004), which 
underlies the HaploBlock software. Furthermore, this 
method offers greater computational feasibility in large 
data sets than many other flexible models, such as the 
product of approximate conditional likelihoods approach 
of Li and Stephens (2003), which underlies the PHASE 
software, because computing time of the Scheet and 
Stephens (2006) algorithm increases linearly with the 
number of genotyped individuals. In the present study, 
the number of haplotype clusters was fixed at values of 
8 (the default value), 16, or 32. Although the software 
allows estimation of the optimal number of haplotype 
clusters, it is very computationally demanding for large 
data sets. In addition, consideration of more than 32 
haplotype clusters was not feasible in the present study, 
because computing time increases quadratically with 
the number of haplotype clusters.

In addition, masked genotypes were imputed us-
ing the HMM-based algorithm of Howie et al. (2009), 
which was implemented via the IMPUTE version 2.0 
software (Department of Statistics, University of Ox-
ford, UK). This algorithm is very flexible, in the sense 
that it can accommodate multiple reference panels of 
phased or unphased genotypes that may be composed 
of different sets of SNP from assays of varying density. 
Furthermore, it is computationally feasible for large 
data sets because of separation of the phasing and im-
putation steps. Specifically, rather than simultaneously 

estimating missing genotypes and integrating over the 
unknown phase of SNP that are present in both the 
reference panels and the study sample (as is the case 
for most other HMM-based algorithms), this algorithm 
estimates haplotypes at SNP that are present in both 
populations and then imputes genotypes in the study 
sample, assuming that these haplotype guesses are cor-
rect. Uncertainty about phasing is taken into account 
by iterating these steps in a Markov chain Monte Carlo 
(MCMC) framework. Thus, unlike many competing 
algorithms for which phasing accuracy does not depend 
on the size of the study sample (e.g.,Scheet and Ste-
phens, 2006; Marchini et al., 2007), IMPUTE 2.0 gains 
accuracy by using information from both the reference 
panels and study sample during the phasing step. The 
computational feasibility of IMPUTE 2.0 is enhanced 
by using only a subset of haplotypes at each MCMC 
iteration to build the conditional distribution of hap-
lotypes of observed SNP for an animal in the study 
sample, given the animal’s genotype, the haplotypes of 
other animals in the study sample, and the haplotypes 
of animals in the reference panel. Rather than sampling 
these “conditioning states” randomly (e.g., Li et al., 
2006), this algorithm selects sets of haplotypes that are 
closest to the animal in question, based on the Ham-
ming distance (i.e., the minimum number of substitu-
tions required to change one haplotype into the other) 
between the current-guess haplotype for this animal 
and for other animals in the population. For computa-
tional reasons, the number of conditioning states used 
in the present study was set to 40, although Howie et 
al. (2009) notes that slight increases in accuracy might 
be achieved by increasing this parameter, albeit with a 
quadratic increase in computing time.

With large data sets, the computational feasibility of 
programs such as fastPHASE 1.2 and IMPUTE 2.0 can 
be enhanced by breaking chromosomes into pieces of 
more manageable size. In the present study, BTA28 was 
analyzed in its entirety using both fastPHASE 1.2 and 
IMPUTE 2.0, because in some scenarios (e.g., with 98% 
or 99% of SNP masked in the study samples), the num-
ber of remaining SNP on BTA28 that were available 
for imputation was extremely limited. In analyses with 
fastPHASE 1.2, BTA1 and BTA15 were also analyzed 
in their entirety, whereas in analyses with IMPUTE 
2.0, computational feasibility was enhanced by break-
ing BTA1 and BTA15 into 4 and 2 pieces of equal size, 
respectively.

RESULTS AND DISCUSSION

The proportion of masked SNP genotypes that were 
imputed correctly was computed for every animal in 
each of the random and future study samples for sub-
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sequent computation of the mean proportion of SNP 
that were imputed correctly, as well as the minimum 
and maximum proportion of SNP that were imputed 
correctly for an individual animal.

As shown in Tables 2, 3, and 4, random assignment of 
masked genotypes assuming Hardy-Weinberg equilib-
rium with allele frequencies estimated from data of the 
reference panels led to proportions of correct genotypes 
that ranged from 0.51 to 0.56. Imputation of genotypes 
using fastPHASE 1.2 with 8 haplotype clusters led to 
proportions of correct genotypes of approximately 0.70 
for BTA1 and BTA15 and 0.66 for BTA28 when only 
1% of genotypes were available for animals in the study 
samples. Corresponding values were 0.72 and 0.68, 
respectively, when 2% of genotypes were available, 
and 0.77 and 0.73, respectively, when 5% of genotypes 
were available. Presumably, the slightly lower accuracy 
for BTA28, which had only 795 SNP in the reference 
panels, was because of the small number of SNP that 
remained for imputation when the proportion discarded 
was large. Significant variation existed between animals 
in the proportion of genotypes that were imputed cor-
rectly, with minimum (maximum) proportions ranging 

from 0.55 to 0.60 (0.73 to 0.76) when 1% of genotypes 
were available to 0.58 to 0.63 (0.83 to 0.86) when 5% of 
genotypes were available.

The mean and maximum proportions of genotypes 
that were imputed correctly by fastPHASE 1.2 increased 
rapidly as the percentage of available SNP in the study 
samples increased to 10% or more of the total SNP on 
a given chromosome. Mean proportions ranged from 
0.79 to 0.85 when 10% of genotypes were available and 
from 0.86 to 0.92 when 20% of genotypes were avail-
able, whereas the maximums ranged from 0.95 to 0.98 
when 10% of genotypes were available and 0.98 to 0.99 
when 20% of genotypes were available. The remaining 
scenarios, with 40 or 80% of genotypes available for 
animals in the study samples, are not likely to arise in 
practical situations involving a low- or medium-density 
SNP assay but might arise when data from 2 competing 
high-density assays of different size are combined (e.g., 
a 50,000-SNP assay and a 30,000-SNP assay). In these 
cases, the mean proportion of genotypes that were 
imputed correctly ranged from 0.96 to 0.99, whereas 
minimums ranged from 0.64 to 0.75 and maximums 
approached unity.
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Table 2. Mean (minimum, maximum) proportion of masked SNP genotypes on chromosome 1 (2,693 total SNP) that were imputed correctly in 
random and future study samples comprising US Jersey cattle, using reference panels comprising 2,542 animals of the same breed1,2 

 Sample

Proportion of 
SNP genotyped in 

study samples Random imputation

fastPHASE 1.2 
(8 haplotype 

clusters)

fastPHASE 1.2 
(16 haplotype 

clusters)

fastPHASE 1.2 
(32 haplotype 

clusters)

IMPUTE 2.0 
(40 conditioning 

states)

Random study 
sample

0.01 0.545 0.703 0.704 0.705 0.720
 (0.445, 0.685) (0.601, 0.750) (0.618, 0.758) (0.614, 0.759) (0.597, 0.869)

0.02 0.545 0.717 0.720 0.723 0.765
 (0.446, 0.687) (0.602, 0.767) (0.629, 0.762) (0.629, 0.770) (0.632, 0.916)

0.05 0.543 0.775 0.776 0.784 0.892
 (0.443, 0.684) (0.623, 0.853) (0.659, 0.838) (0.685, 0.856) (0.712, 0.996)

0.10 0.545 0.863 0.882 0.894 0.942
 (0.442, 0.685) (0.659, 0.945) (0.742, 0.955) (0.775, 0.966) (0.732, 0.998)

0.20 0.544 0.922 0.948 0.964 0.951
 (0.447, 0.685) (0.689, 0.989) (0.803, 0.994) (0.827, 0.997) (0.775, 0.999)

0.40 0.542 0.959 0.981 0.989 0.948
 (0.447, 0.682) (0.751, 0.999) (0.845, 1.000) (0.870, 1.000) (0.747, 0.998)

0.80 0.534 0.975 0.990 0.994 0.946
 (0.417, 0.685) (0.797, 1.000) (0.866, 1.000) (0.890, 1.000) (0.737, 1.000)

Future study 
sample

0.01 0.542 0.699 0.697 0.702 0.712
 (0.469, 0.660) (0.598, 0.763) (0.597, 0.744) (0.612, 0.756) (0.568, 0.841)

0.02 0.543 0.718 0.716 0.722 0.754
 (0.470, 0.660) (0.608, 0.776) (0.617, 0.770) (0.622, 0.785) (0.621, 0.900)

0.05 0.541 0.768 0.777 0.780 0.880
 (0.470, 0.659) (0.615, 0.834) (0.642, 0.838) (0.670, 0.855) (0.735, 0.993)

0.10 0.542 0.851 0.878 0.887 0.935
 (0.468, 0.659) (0.648, 0.950) (0.712, 0.958) (0.763, 0.963) (0.802, 0.994)

0.20 0.541 0.913 0.942 0.960 0.944
 (0.468, 0.659) (0.681, 0.989) (0.773, 0.995) (0.861, 0.998) (0.794, 0.998)

0.40 0.540 0.953 0.978 0.989 0.941
 (0.459, 0.655) (0.749, 0.998) (0.868, 0.999) (0.893, 0.999) (0.753, 0.998)

0.80 0.533 0.969 0.989 0.995 0.937
 (0.436, 0.674) (0.776, 1.000) (0.892, 1.000) (0.879, 1.000) (0.736, 0.998)

1fastPHASE 1.2 (P. Scheet and M. Stevens; University of Washington TechTransfer Digital Ventures Program, Seattle, WA) and IMPUTE 2.0 
(B. Howie and J. Marchini; Department of Statistics, University of Oxford, UK) are population-based algorithms.
2Bold font denotes the greatest imputation accuracy for a given masking rate.



Increasing the number of clusters tended to increase 
the accuracy of imputation with fastPHASE 1.2, as 
shown in Tables 2, 3, and 4. This seems to indicate 
that 8 clusters could not adequately accommodate the 
size and complexity of the Jersey population considered 
herein. With 16 haplotype clusters, the mean proportion 
of correct genotypes changed negligibly for scenarios in 
which only 1 or 2% of genotypes were available for ani-
mals in the study samples. However, as the proportion 
of available genotypes increased to 5 or 10%, significant 
increases in the accuracy of imputation became appar-
ent, particularly for the mean and minimum values. 
This pattern continued, and became more pronounced, 
as the proportion of available genotypes for animals in 
the study samples increased up to 20, 40, or 80%.

The aforementioned gains in accuracy with an in-
crease in the number of haplotype clusters continued 
when 32 clusters were modeled, as shown in Tables 2, 
3, and 4. In this case, the mean proportion of genotypes 
imputed correctly ranged from 0.66 to 0.73 when only 
1% or 2% of genotypes were available for animals in the 
study samples. This proportion increased to 0.75 to 0.89 
when 5 to 10% of genotypes were available, as would be 

the case for a medium-density panel comprising 2,000 
to 4,000 SNP. As the percentage of available genotypes 
increased to 20, 40, or 80%, the mean proportion of 
correct genotypes increased from 0.90 to >0.99. This 
indicates that allowing a large number of haplotype 
clusters is desirable, but the corresponding gains in ac-
curacy come with a considerable computational cost.

Accuracy of imputed genotypes for animals in the 
study samples using IMPUTE 2.0 is also shown in 
Tables 2, 3, and 4. The IMPUTE 2.0 algorithm pro-
vides genotype probabilities for each locus and allows 
the user to specify the threshold at which a genotype 
should be called. In the present study, we called all 
genotypes, regardless of the magnitude of the probabil-
ity for the most likely genotype, such that imputation 
accuracy could be compared with other methods. In 
practice, it may be advantageous to refrain from calling 
genotypes, and to instead use the corresponding geno-
type probabilities directly when building the coefficient 
matrix for subsequent prediction of genomic breeding 
values. When the proportion of masked genotypes was 
large, such as 98 or 99%, IMPUTE 2.0 was slightly 
more accurate, with gains in accuracy relative to fast-
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Table 3. Mean (minimum, maximum) proportion of masked SNP genotypes on chromosome 15 (1,377 total SNP) that were imputed correctly 
in random and future study samples comprising 604 US Jersey cattle, using reference panels comprising 2,542 animals of the same breed1,2 

 Sample

Proportion of 
SNP genotyped in 

study samples Random imputation

fastPHASE 1.2 
(8 haplotype 

clusters)

fastPHASE 1.2 
(16 haplotype 

clusters)

fastPHASE 1.2 
(32 haplotype 

clusters)

IMPUTE 2.0 
(40 conditioning 

states)

Random study 
sample

0.01 0.539 0.703 0.700 0.701 0.743
 (0.462, 0.684) (0.592, 0.761) (0.611, 0.760) (0.596, 0.759) (0.549, 0.961)

0.02 0.539 0.725 0.723 0.725 0.801
 (0.464, 0.684) (0.604, 0.784) (0.620, 0.778) (0.624, 0.790) (0.607, 1.000)

0.05 0.539 0.769 0.782 0.790 0.905
 (0.461, 0.684) (0.629, 0.862) (0.677, 0.856) (0.693, 0.866) (0.687, 1.000)

0.10 0.540 0.857 0.873 0.887 0.938
 (0.463, 0.682) (0.641, 0.948) (0.742, 0.958) (0.737, 0.959) (0.740, 1.000)

0.20 0.540 0.920 0.949 0.960 0.944
 (0.462, 0.682) (0.708, 0.986) (0.797, 0.998) (0.794, 0.998) (0.742, 0.999)

0.40 0.545 0.953 0.979 0.987 0.945
 (0.456, 0.695) (0.753, 1.000) (0.852, 1.000) (0.851, 1.000) (0.742, 1.000)

0.80 0.556 0.969 0.987 0.993 0.943
 (0.447, 0.681) (0.777, 1.000) (0.874, 1.000) (0.882, 1.000) (0.706, 1.000)

Future study 
sample

0.01 0.539 0.695 0.693 0.701 0.730
 (0.434, 0.662) (0.557, 0.756) (0.573, 0.749) (0.574, 0.766) (0.533, 0.925)

0.02 0.539 0.712 0.719 0.726 0.780
 (0.436, 0.661) (0.580, 0.773) (0.576, 0.784) (0.596, 0.797) (0.568, 0.981)

0.05 0.538 0.758 0.768 0.780 0.890
 (0.433, 0.661) (0.581, 0.839) (0.591, 0.875) (0.644, 0.856) (0.682, 0.999)

0.10 0.540 0.839 0.862 0.874 0.924
 (0.438, 0.663) (0.596, 0.946) (0.655, 0.952) (0.732, 0.960) (0.762, 0.998)

0.20 0.539 0.898 0.929 0.951 0.932
 (0.432, 0.659) (0.634, 0.990) (0.738, 0.994) (0.841, 0.993) (0.778, 1.000)

0.40 0.543 0.938 0.967 0.984 0.935
 (0.427, 0.658) (0.684, 0.998) (0.780, 1.000) (0.890, 1.000) (0.772, 1.000)

0.80 0.556 0.956 0.981 0.992 0.930
 (0.404, 0.684) (0.692, 1.000) (0.875, 1.000) (0.946, 1.000) (0.663, 1.000)

1fastPHASE 1.2 (P. Scheet and M. Stevens; University of Washington TechTransfer Digital Ventures Program, Seattle, WA) and IMPUTE 2.0 
(B. Howie and J. Marchini; Department of Statistics, University of Oxford, UK) are population-based algorithms.
2Bold font denotes the greatest imputation accuracy for a given masking rate.



PHASE 1.2 ranging from approximately 0.02 to 0.07. 
However, IMPUTE 2.0 was significantly more accurate 
for scenarios in which 90 or 95% of genotypes were 
masked in the study sample. For example, when 5% 
of genotypes were available for animals in the study 
samples, accuracy of imputation ranged from 0.87 to 
0.91 for IMPUTE 2.0 and from 0.75 to 0.77 for fast-
PHASE 1.2 with 32 haplotype clusters. When 10% of 
genotypes were available, accuracy ranged from 0.90 to 
0.94 for IMPUTE 2.0 and from 0.82 to 0.85 for fast-
PHASE 1.2 with 32 haplotype clusters. However, when 
20, 40, or 80% of SNP genotypes were available for 
animals in the study samples, fastPHASE 1.2 was more 
accurate, because accuracy of imputation peaked at ap-
proximately 0.90 to 0.95 for IMPUTE 2.0. Perhaps the 
reason why accuracy of IMPUTE 2.0 did not approach 
unity as the proportion of masked genotypes decreased, 
as was the case for fastPHASE 1.2, was because of the 
aforementioned approximation in this algorithm that 
involves sampling of conditioning states rather than 
integration over all possible haplotype configurations. 
Another possibility is that remaining genotype errors 
(after removal of SNP with <90% call rate and SNP 

with >1% parent-progeny conflicts), as well as errors in 
the map order, inhibit the ability of such algorithms to 
achieve high imputation accuracy for some animals.

Differences in the accuracy of imputation between 
the random and future study samples were small, al-
though accuracy was slightly higher for the random 
study samples. Likewise, differences between chromo-
somes were also small, with slightly greater accuracy for 
the larger chromosomes (BTA1 and BTA15) than for 
BTA28. Because this study utilized population-based 
methods that ignored pedigree information, the accu-
racy of imputation for animals in the study samples 
that had genotyped ancestors or offspring in the refer-
ence panels was similar to that of animals that lacked 
such information. Methods that utilize family data, 
such as the long-range phasing approach of Kong et 
al. (2008), would most likely provide greater accuracy 
than the approaches implemented herein for animals 
with genotyped parents.

Figure 1 shows frequency distributions of the propor-
tion of SNP genotypes on BTA15 that were imputed 
correctly for each animal in the future study samples 
using fastPHASE 1.2 with 32 haplotype clusters or 
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Table 4. Mean (minimum, maximum) proportion of masked SNP genotypes on chromosome 28 (795 total SNP) that were imputed correctly in 
random and future study samples comprising 604 US Jersey cattle, using reference panels comprising 2,542 animals of the same breed1,2 

 Sample

Proportion of 
SNP genotyped in 

study samples Random imputation

fastPHASE 1.2 
(8 haplotype 

clusters)

fastPHASE 1.2 
(16 haplotype 

clusters)

fastPHASE 1.2 
(32 haplotype 

clusters)

IMPUTE 2.0 
(40 conditioning 

states)

Random study 
sample

0.01 0.513 0.666 0.664 0.664 0.689
 (0.427, 0.685) (0.585, 0.741) (0.589, 0.729) (0.593, 0.729) (0.536, 0.914)

0.02 0.511 0.680 0.678 0.678 0.727
 (0.425, 0.685) (0.584, 0.754) (0.596, 0.757) (0.591, 0.751) (0.517, 0.999)

0.05 0.512 0.738 0.755 0.767 0.886
 (0.426, 0.685) (0.613, 0.849) (0.625, 0.858) (0.634, 0.874) (0.617, 1.000)

0.10 0.511 0.807 0.827 0.848 0.917
 (0.427, 0.681) (0.622, 0.922) (0.649, 0.953) (0.647, 0.956) (0.609, 1.000)

0.20 0.512 0.875 0.916 0.942 0.921
 (0.424, 0.677) (0.651, 0.983) (0.637, 0.992) (0.672, 0.998) (0.614, 1.000)

0.40 0.515 0.928 0.968 0.981 0.926
 (0.406, 0.690) (0.683, 1.000) (0.686, 1.000) (0.709, 1.000) (0.612, 1.000)

0.80 0.518 0.955 0.985 0.993 0.921
 (0.390, 0.681) (0.710, 1.000) (0.716, 1.000) (0.753, 1.000) (0.525, 1.000)

Future study 
sample

0.01 0.509 0.663 0.659 0.662 0.679
 (0.435, 0.694) (0.549, 0.734) (0.573, 0.735) (0.573, 0.733) (0.532, 0.825)

0.02 0.508 0.677 0.674 0.677 0.720
 (0.432, 0.693) (0.550, 0.743) (0.560, 0.745) (0.584, 0.757) (0.501, 0.997)

0.05 0.509 0.733 0.748 0.754 0.870
 (0.433, 0.695) (0.584, 0.843) (0.590, 0.851) (0.630, 0.866) (0.602, 1.000)

0.10 0.507 0.788 0.811 0.823 0.902
 (0.426, 0.693) (0.604, 0.925) (0.598, 0.946) (0.651, 0.955) (0.681, 1.000)

0.20 0.509 0.862 0.901 0.929 0.904
 (0.430, 0.691) (0.613, 0.986) (0.613, 0.994) (0.745, 0.997) (0.632, 1.000)

0.40 0.511 0.907 0.956 0.978 0.910
 (0.415, 0.690) (0.635, 1.000) (0.762, 1.000) (0.873, 1.000) (0.654, 1.000)

0.80 0.511 0.944 0.980 0.991 0.896
 (0.395, 0.671) (0.710, 1.000) (0.846, 1.000) (0.932, 1.000) (0.463, 1.000)

1fastPHASE 1.2 (P. Scheet and M. Stevens; University of Washington TechTransfer Digital Ventures Program, Seattle, WA) and IMPUTE 2.0 
(B. Howie and J. Marchini; Department of Statistics, University of Oxford, UK) are population-based algorithms.
2Bold font denotes the greatest imputation accuracy for a given masking rate.



IMPUTE 2.0 with 40 conditioning states. In general, 
the standard deviation of the proportion of genotypes 
imputed correctly was greater for IMPUTE 2.0 than for 
fastPHASE 1.2, and this difference was most noticeable 
when the proportion of SNP genotyped in the study 
sample was <0.05 or >0.20. As noted previously, fast-
PHASE 1.2 provided greater predictive ability when the 
proportion of SNP genotyped in the study sample was 
0.20 or greater, and the degree of superiority increased 
as the proportion of masked genotypes decreased. Con-
versely, IMPUTE 2.0 offered greater predictive ability 
when the proportion of SNP genotyped in the study 
samples was 0.10 or less, and the superiority of this 
algorithm was most obvious when the aforementioned 
proportion was equal to 0.05.

It should be noted that the accuracy of genotype 
imputation depends critically on the level of LD within 
a population. As such, the results presented herein 
should be considered specific to the US Jersey cattle 
population. Previous studies have indicated that LD 
may be higher in Jerseys than many other common 
breeds of dairy cattle. For example, Villa-Angulo et al. 
(2009) reported that average r2 across 101 high-density 
regions of BTA6, BTA14, and BTA25 that were 100 
kb in length, with an average of 19.6 SNP per region, 
was 0.380 in Jersey cattle, compared with 0.377, 0.333, 
0.323, and 0.324, respectively, in the Brown Swiss, 
Guernsey, Holstein, and Norwegian Red breeds.

Several additional analyses were carried out in which 
we attempted to use information regarding popula-
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Figure 1. Frequency distribution of the proportion of masked SNP genotypes on chromosome 15 (1,377 total SNP) that were imputed cor-
rectly in future study samples comprising 604 US Jersey cattle, using reference panels comprising 2,542 animals of the same breed with the 
IMPUTE 2.0 (40 conditioning states; B. Howie and J. Marchini; Department of Statistics, University of Oxford, UK) or fastPHASE 1.2 (32 
haplotype clusters; P. Scheet and M. Stevens; University of Washington TechTransfer Digital Ventures Program, Seattle, WA) population-based 
algorithms.



tion structure to enhance the accuracy of imputation 
using the fastPHASE 1.2 algorithm. First, animals 
were divided into subpopulations based on country 
of registration. Second, animals were grouped into 5 
subpopulations based on allele frequencies at 8,677 
evenly spaced loci (i.e., by choosing every fifth SNP 
from a list ordered by physical position), using the 
model-based clustering algorithm implemented in the 
Structure 2.3.1 software (Pritchard et al., 2000). Third, 
animals were grouped into 35 subpopulations according 
to sire family (34 families with at least 25 members and 
1 subpopulation for the remainder). Results of these 
preliminary analyses are not shown because none led to 
an improvement in the accuracy of genotype imputa-
tion. Last, additional analyses with IMPUTE 2.0 with 
a greater number of MCMC iterations for integration 
over the space of possible phase reconstructions for ob-
served data genotypes (50 rather than the default value 
of 30) failed to provide any increase in the accuracy of 
imputed genotypes for animals in the study samples.

CONCLUSIONS

Incorporation of low- or medium-density SNP geno-
types into routine genomic evaluations, with the re-
maining genotypes imputed via algorithms such as those 
utilized herein, could greatly enhance the efficiency of 
breed improvement programs. In summary, it appears 
that publicly available, population-based imputation 
algorithms can provide predicted SNP genotypes for 
Jersey cattle with mean accuracy of 0.80 to 0.95 when a 
subset of animals is genotyped with a medium-density 
panel comprising 2,000 to 4,000 SNP. With 1,000 or 
fewer SNP, the proportion of missing genotypes that 
are assigned correctly by such algorithms may be less 
than 0.80 for many animals, whereas with more than 
8,000 SNP accuracy of imputation will exceed 0.95, on 
average, and will approach unity for some individuals. 
Improvements in the accuracy of genotype imputation 
might be achieved by selecting SNP that are most 
informative (i.e., those with high MAF) for low- or 
medium-density assays, compared with random selec-
tion of SNP in the present study. Furthermore, the 
impact of genotype errors, as well as errors in map 
order, should be considered in future studies. Finally, 
the computational feasibility of imputation algorithms 
such as those utilized herein would be greatly enhanced 
by incorporating reference panels consisting of phased 
haplotypes, rather than unphased diploid genotypes as 
in the present study. Furthermore, “tag” SNP could be 
used to track phased haplotypes, as well as quantitative 
trait loci that are in LD with SNP in these haplotypes, 
from one generation to the next. The estimated accura-
cies presented herein should be considered conservative 

because pedigree information was not considered, and 
the availability of high-density genotypes of the sires 
and dams of animals in the study samples was not a 
prerequisite. As such, future studies should evaluate the 
gains in imputation accuracy that can be achieved by 
incorporating pedigree information, when it is avail-
able. In practice, many animals will have high-density 
genotypes for both parents, and estimation of the prob-
abilities of descent of marker alleles may be possible for 
other animals based on the genotypes of grandparents 
and other close relatives. One may wish to use a 2-step 
approach in which animals with genotyped parents (or 
other close ancestors) are processed first using a family-
based method, and animals that lack such information 
are processed subsequently using a population-based 
algorithm. Such an approach could be considered as a 
form of “boosting” (e.g., Freund and Schapire, 1996), in 
which 2 or more complementary models, each of which 
treats a significant percentage of the data optimally, 
are implemented jointly to solve an estimation or clas-
sification problem. The resulting genotype probabilities 
could then be combined with high-density genotypes 
of other animals in the population for estimation of 
SNP effects and prediction of genomic breeding values. 
Future studies should evaluate the effect of imputation 
errors on the accuracy of predicted genomic breeding 
values, on average, as well as for specific subsets of 
animals that are more or less closely related to animals 
in the reference panel.
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