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  ABSTRACT 

  Genomic predictions of estimated breeding values 
(EBV) for dairy cattle include effects of tens of thou-
sands of markers distributed over 30 chromosomes for 
many traits. There are so many numbers that data are 
difficult to compare, levels of detail are obscured, and 
data cannot easily be tabulated. Well-designed graphics 
can present more information in a smaller area than 
text or tables and provide insight into the data. Subtle 
differences can be detected more easily among graph-
ics than among data grids, allowing information to be 
presented with greater density. Genomic data can be 
visualized at several levels, such as the distribution 
of marker effects across the genome and relationships 
among markers on the same chromosome. All markers 
affecting a trait can be plotted on the same ordinate 
to visualize the distribution of marker effects across 
the genome, colors or textures can be used to differ-
entiate between chromosomes, and stacked graphs can 
be constructed to compare interesting groups of traits. 
Chromosomal EBV can be presented as high-resolution 
graphics embedded in text to provide an overview of 
individual animals for comparison to potential mates. 
Small multiples of chromosomal genetic correlation 
matrices from which nonsignificant values have been 
excluded can be used to identify interesting patterns of 
association among traits, such as that on chromosome 
18 associated with calving traits, conformation, and 
economic merit. Line plots of marker effects for reces-
sive traits can be used to quickly locate chromosomal 
regions in which causative mutations are probably 
located, identifying areas of interest for further study. 
These graphics are easily produced automatically and 
added to online query systems, providing users with 
novel information at little cost. 
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  INTRODUCTION 

  The recent implementation of genomic evaluations in 
the United States (VanRaden, 2008; VanRaden et al., 
2009) has been accompanied by a dramatic increase 
in the volume of data that are available. The August 
2009 Holstein evaluation included data on 31 traits and 
43,385 SNP. A total of 1,344,935 marker solutions were 
combined with genotypes of 28,047 animals to calculate 
individual genomic PTA. Several additional quantities 
can be derived from these solutions, such as 30 chro-
mosomal PTA for each animal–trait combination. The 
resulting data are difficult to compare, levels of detail 
are obscured, and tabulation is not feasible. Alternative, 
high-resolution means of presentation are necessary. 

  There is a long tradition in animal breeding of using 
visual tools to present ideas. Wright’s (1934) work on 
path analysis used arrow drawings to describe correla-
tions among components of a system from which the 
path coefficients may be derived. Lush (1949) used il-
lustrations to explain many points about animal breed-
ing schemes, such as the accuracy of progeny testing 
schemes or programs for breed improvement through 
the exchange of genetic material. Animal breeding texts 
(e.g., Legates and Warwick, 1990) use bracket and ar-
row drawings of pedigrees to discuss inbreeding and 
relationships. Huang and Shanks (1995) described a 
method for plotting additive and dominance relation-
ships and coefficients of inbreeding that used gradu-
ated circles to denote magnitude. Some properties of 
random regression test-day models were elegantly ex-
plained by Kachman (2004) using a series of response 
surfaces. Wickham et al. (2006) demonstrated how sev-
eral graphical techniques could be applied to beef and 
dairy data. Recently, a graphical approach was used to 
identify bulls with bimodal patterns of inheritance for 
calf survival (Schlesser et al., 2009). 

  Pedigree visualization has received a substantial 
amount of attention, and there are many more software 
packages for that purpose than can be mentioned here 
(e.g., Garbe and Da, 2003). Some of those applica-
tions also provide tools for visualizing the sparsity and 
magnitude of numerator relationship matrices (Cole, 
2007). The bioinformatics community has developed 
several tools for graphical presentation of data, includ-
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ing metabolic networks (Carey et al., 2005), haplotype 
structure (e.g., Haploview; Barrett et al., 2005), and 
sequence structure and annotation (e.g., National Cen-
ter for Biotechnology Information, 2009). Most of those 
tools focus on describing structure and function, rather 
than quantitative analysis.

There has been a substantial amount of research into 
statistical graphics and data visualization over the last 
30 years (Tukey, 1977; Tufte, 1983; Cleveland, 1993). 
As Deming noted, “[G]raphical methods can retain the 
information in the data” (quoted in Cleveland, 1993), 
and are key to the complementarity of graphics and 
numerical techniques. Statistical procedures are “lossy,” 
meaning that information is discarded when calcula-
tions are performed, which is not the case with graph-
ics. Visualizations do not have to be lossy but also 
cannot be compared in the same manner as statistical 
quantities, such as tests of hypotheses.

The objective of this paper is to present several ap-
proaches for visualizing high-dimensional numeric data. 
Emphasis will be placed on results from genomic evalu-
ations.

MATERIALS AND METHODS

Data

Genomic data, phenotypic data, and edits were as 
reported in VanRaden et al. (2009). Genotypes for 
43,385 SNP scored in 32,234 Brown Swiss, Holstein, 
and Jersey cattle were obtained using the Illumina 
Bovine SNP50 chip (Illumina, San Diego, CA; Matuku-
malli et al., 2009). Genomic predictions were computed 
using an infinitesimal model with a heavy-tailed prior 
as described in VanRaden (2008) and Cole et al. (2009). 
Predicted transmitting abilities were from the August 
2009 US genetic evaluations calculated by the Animal 
Improvement Programs Laboratory (AIPL; USDA, 
Beltsville, MD).

Tools

Most of the figures in this paper were produced using 
the Python programming language v. 2.6 (Langtan-
gen, 2008) as distributed with SAGE v. 1.4.0 (Stein 
and Joyner, 2005). The data were processed with the 
NumPy module v. 1.3.0 (Oliphant, 2006) and visualiza-
tion was performed with matplotlib v. 0.99.0 (Hunter, 
2007). Sparklines were produced using code adapted 
from Gheorghiu’s (2006) sparkplot module (modified 
version available: http://www.aipl.arsusda.gov/soft-
ware/graphics/; accessed September 9, 2009). Chromo-
somal PTA plots were produced using ColdFusion MX 
7.0.1 (Adobe Inc., San Jose, CA). Calculations were 

performed on servers and workstations running the Red 
Hat Enterprise Linux 5.0 (Red Hat Inc., Raleigh, NC) 
operating system.

Sparklines

Sparklines are high-resolution graphics embedded in 
text (Tufte, 2006). They are intended for use within a 
body of text, rather than set apart, as is commonly the 
case with figures and illustrations, and may be used 
to represent many sorts of data. Most authors have 
focused on the application of sparklines to time-series 
data, such as levels of blood metabolites and wins-losses 
in sports, but Tufte (2006) discusses many applications 
of small graphics, including canonical work in the 17th 
century by the Italian astronomer Galileo Galilei. In 
animal breeding, obvious uses of such intertextual 
graphics include the display of genetic merit and il-
lustration of genetic trends.

RESULTS AND DISCUSSION

Sparklines

Individual Genetic Merit. Predicted transmitting 
abilities can now be computed for each chromosome in 
the genome, and there is considerable variation among 
chromosomes. As an example, consider this excerpt 
from Cole et al. (2009) to which a sparkline showing the 
chromosomal PTA for the bull O-Bee Manfred Justice-
ET (NAAB Code: 7HO6417) has been added:

“For example, cows with positive CEBV for chro-
mosomes 13, 14, 16, 17, 19, or 20 might be selected 
for breeding to the bull O-Bee Manfred Justice-ET 
(7HO6417) (Figure 1).”

The sparkline emphasizes the point being made by 
including the chromosomal PTA in the text. The reader 
is not forced to interrupt their reading to locate and 
study the figure. However, it is important to emphasize 
that these small plots are complements to, rather than 
replacements for, more detailed graphics. The range of 
values in the sparkline is unclear, and chromosomes 17, 
26, and 27 appear to have values of 0, a problem that 
a larger figure showing more detail (Figure 1) does not 
have.

It is much easier to identify individual chromosomes, 
as well as the magnitude of their associated PTA, us-
ing the larger, more detailed graph shown in Figure 
1. A query to display these data is available on the 
AIPL Web site (http://aipl.arsusda.gov/CF-queries/
Bull_Chromosomal_EBV/bull_chromosomal_ebv.cfm; 
accessed September 4, 2009) and includes all genotyped 
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animals with published evaluations. In addition to a 
larger figure, the query also provides details about the 
animal’s genomic and combined PTA and provides 
links to related information about the animal and the 
evaluation system.

Predicted transmitting abilities, such as those shown 
in the preceding sparklines and Figure 1, are calculated 
as half of the sum of the average effects of the genes 
carried by an individual. In the absence of an efficient 
procedure for haplotyping, animals are still assumed 
to transmit “average” chromosomes to their progeny, 
which are shown in the figures. For example, a bull 
with a PTA for lifetime net merit (NM$) of +80 for 
BTA 1 may have one average chromosome (PTA NM$ 
= 0) and one very good chromosome (PTA NM$ = 
+160), not necessarily 2 chromosomes with similar 
PTA NM$ of approximately +80. Abdel-Azim (2009) 
has developed a method for estimating this sampling 
variance using genomic data, which may be useful in 
planning matings.

Top Bull Lists. Lists of bulls sorted by genetic merit 
for NM$ are published by AIPL following each genetic 
evaluation and allow users to easily identify bulls that 
may be useful in their breeding programs. One of the 
interesting things that can immediately be noted when 
sparklines are included (Figure 2) is that there is con-
siderable variation in high-value chromosomes among 
the top bulls. Clicking on a sparkline opens a new win-
dow containing the results from the chromosomal PTA 
query.

Trends. Genetic and phenotypic trends are often 
discussed, particularly when novel traits are being 
considered or when the efficacy of selection is under 

consideration. In a discussion of phenotypic trends for 
stillbirth in US Holstein, Cole et al. (2007) wrote

“The incidence of SB increased from 11.2% in 
1980 to 12.0% in 2004 for heifers, and decreased 
from 5.8% in 1980 to 5.6% in 2005 for multiparous 
cows.”

This sentence succinctly presents their results, but does 
not tell the reader very much of value about the trends. 
Consider the same text with sparklines added to il-
lustrate the heifer and cow trends:

“The incidence of SB decreased from 11.16% in 1980 
to 11.08% in 2004 for heifers , 
and decreased from 5.29% in 1980 to 4.83% in 2005 
for multiparous cows .”

The first (1980) and last (2005) birth years are indi-
cated by dots, and the stillbirth rate is included above 
the labels. When the data are shown in this manner, 
the reader can see that there is not a constant trend 
in stillbirth rates, which is implied by the text, but 
that stillbirth has increased over some intervals and 
decreased over others.

Figure 3 (based on Figure 2 of Cole et al., 2007) 
provides a more detailed view of the trends than do the 
sparklines. It is particularly easy to compare trends be-
cause results for primiparous, multiparous, and all cows 
are included in the graph. The sparklines provide the 
reader with an overview of the data without the need 
to leave the text, whereas the full-sized figure provides 
important details for in-depth study.
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Figure 1. Chromosomal PTA of lifetime net merit for the bull O-Bee Manfred Justice-ET (7HO6417). Color version available in the online 
PDF.



Tufte (2006) provides an extremely thorough discus-
sion of how sparklines should be designed and used, 
but overlooks the issue of cross-referencing, which is 
relevant to scientific publication. The use of sparklines 
could follow a system similar to that used for equations 
in Journal of Dairy Science, in which sparklines referred 
to multiple times in the text would be numbered for 
easy reference. The preceding example could be rewrit-
ten as

“The incidence of SB decreased from 11.16% in 
1980 to 11.08% in 2004 for heifers (sparkline [1]), 
and decreased from 5.29% in 1980 to 4.83% in 
2005 for multiparous cows (sparkline [2]):

 heifer stillbirth [1]

 cow stillbirth [2],”

which would permit unambiguous references to spar-
klines 1 and 2 when comparing them to Figure 3. If 
there is no need to explicitly reference the sparklines 
later in the discussion, then the original presentation 
is preferable.

Optimal Matings

Many tools for identifying optimal matings have been 
proposed, with the most common being index selection. 
Historically, most approaches have focused on bulls be-
cause much more accurate PTA are available for males 
than females. Chromosomal PTA are now available for 
20,653 Holstein bulls and 7,402 cows, and the number 
of genotyped cows is expected to increase dramatically 
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Figure 3. Phenotypic trend for stillbirths (SB) in primiparous heif-
ers (dotted line), cows (broken line), and all animals (solid line) for 
calvings between 1980 and 2005.
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when a lower density, lower cost SNP chip becomes 
available. In this section, the application of graphical 
tools to selection decisions will be discussed.

Tracking Individual Chromosomes. Results from 
genomic evaluations may be used to identify chromo-
somes with high genetic merit and track them through 
pedigrees. As of August 2009, the Holstein bull Badger-
Bluff Fanny Freddie (Freddie, 001HO08784) was the 
highest net merit bull in the breed, with a PTA NM$ of 
+911. Individual chromosomes can be tracked through 
Freddie’s pedigree using the chromosomal PTA of his 
sire, O-Bee Manfred Justice-ET (O-Man, 007HO06417; 
Figure 1), and his dam, Badger-Bluff Flo Fanny-TW 
(Fanny, HOUSA000051854015; Figure 4).

Freddie has high chromosomal NM$ for BTA1, BTA6, 
BTA11, BTA24, and BTA28 (Figure 5). O-Man was 
above average for BTA1 (+76) as was Fanny (+73), 
and Freddie had a PTA almost equal to the parent 
average (+71). Although both O-Man and Fanny had 
good PTA for BTA6 (+61 and +46, respectively), 
Freddie surpassed them substantially with a PTA of 
+116. Freddie’s BTA11 (+77) was also slightly better 
than that of his sire (+59) and dam (+48). For BTA24, 
Freddie (+55) and O-Man (+58) had better PTA than 
Fanny (+21). Freddie had a much better PTA NM$ for 
BTA28 (+77) than did O-Man (+33) or Fanny (+28).

The chromosomes for which Freddie had the poorest 
PTA NM$ included BTA5 (−2), BTA14 (−12), BTA20 
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Figure 4. Chromosomal PTA of lifetime net merit for the cow Badger-Bluff Flo Fanny-TW (HOUSA000051854015). Color version available 
in the online PDF.

Figure 5. Chromosomal PTA of lifetime net merit for the bull Badger-Bluff Fanny Freddie (001HO08784). Color version available in the 
online PDF.



(+2), BTA26 (−7), and the X chromosome (−8). O-
Man had slightly above average NM$ for BTA5 (+29), 
whereas Fanny was below average (−28). Both O-Man 
and Fanny were poorer than average for BTA14, with 
PTA NM$ of −13 and −28, respectively. O-Man was 
poor for BTA20 (−17), whereas Fanny was above aver-
age (+29). Freddie, O-Man, and Fanny had negative 
PTA NM$ for BTA26 of −7, −2, and −1, respectively. 
Although O-Man had a good PTA NM$ for the X 
chromosome (+55), both Freddie (−9) and Fanny (−7) 
were below average.

These results confirm that parents with desirable 
chromosomal PTA transmit good chromosomes to their 
offspring. Prospective mates can be genotyped to iden-
tify those with high chromosomal PTA to complement 
Freddie’s strengths or improve on his weaknesses.

Mate Selection. In this section we will discuss the 
problems of using chromosomal PTA to select cows for 
mating to the bull Co-Op O-Style Oman Just-ET (O-
Style, 001HO09167) , an O-Man 
son with a PTA NM$ of +793 (Figure 6). Three cows, 
representing very high, average, and very low genetic 
merit animals, have been selected for ease of compari-
son. Cow A has a very poor PTA NM$ of −757; cow 
B is slightly above average, with a PTA NM$ of +96; 
and cow C has a very high PTA NM$ of +823. In the 
following discussion, the chromosomal PTA for O-Style 
and a cow are presented, followed by the chromosomal 
parent averages (PA) of the offspring.

Calf A has a PA NM$ of +12, making it an average 
Holstein. Cow A is not a genetically desirable animal, 
having only 4 chromosomes with PTA greater than 

zero (BTA 9–11, 29). O-Style has positive chromosomal 
PTA for all but 2 chromosomes (BTA26 and 28).

 O-Style

 cow A

 calf A

Examination of the sparklines for the parents shows 
which chromosomes of the calf are expected to be good 
(positive) or poor (negative) given the parental chromo-
somes. However, offspring inherit only one chromosome 
from each parent, or a blend if crossing-over occurs. 
Thus, a chromosomal PTA of 0 can be explained by 2 
average chromosomes (e.g., 0 and 0), or one very good 
and one quite poor chromosome (e.g., +42 and −42). In 
the absence of haplotypes, sparklines provide a useful 
overview of an animal’s genetic merit, but there may 
be considerable variation among offspring of the same 
parents.

Calf B has a PA NM$ of +439, and positive chro-
mosomal PA across most of the genome. Cow B is an 
above-average Holstein cow with particularly good 
BTA8 and 10, and might be an attractive mate for 
O-Style, who has an average BTA8:

 O-Style

 cow B
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Figure 6. Chromosomal PTA of lifetime net merit for the bull Co-Op O-Style Oman Just-ET (001HO09167). Color version available in the 
online PDF.



 calf B

Finally, calf C has a PA NM$ of +803, placing it in 
the 99th percentile for all Holsteins. Cow C has very 
desirable PTA for most chromosomes and also ranks 
in the 99th percentile in the Holstein breed. O-Style 
appears to be an excellent mate for cow C, but there 
may be bulls that better complement her weaknesses, 
particularly BTA 24 through 28:

 O-Style

 cow C

 calf C

It is possible to overlay the chromosomal PTA of 
potential mates to produce a sparkline showing the 
chromosomal breeding values resulting from a proposed 
mating and the contributions of each parent.

Such stacked bar charts are not easy to produce with 
current software, and when they are embedded in text 
it can be difficult to differentiate among sire and dam 
contributions because of their small size. As haplotypes 
become available, it may be interesting to produce 
larger versions of this plot to see how the offspring’s 
genotype is the sum of the parental contributions.

Sparklines are useful selection tools when a breeder 
wants to improve an individual chromosome, although 
the chromosomal PTA may differ from expectations 
because the sparklines do not distinguish between the 
aggregate breeding value and that of individual hap-
lotypes. If the objective is to improve several chromo-
somes simultaneously, then a computational approach 
should be used to select mates.

Chromosomal Selection. Ideally, we would like to 
produce an animal whose genome includes all of the 
best chromosomes in the population. This could be done 
by identifying the animals with the best chromosomes 
and mating them in pairwise fashion to produce off-
spring that have the 2 best parental chromosomes. The 
offspring would then be mated in a similar fashion to 
produce individuals with 4 of the best chromosomes. In 
the best case, a series of 60 matings over 5 generations 
(approximately 25 yr) would be needed to produce such 
a “supercow,” which could then be propagated by em-
bryo transfer or cloning. This is akin to the production 
of consomic mouse strains, in which one chromosome in 
an inbred line of mice has been replaced by the homolo-

gous chromosome from another inbred strain through a 
series of backcrosses (e.g., Takada et al., 2008). A velo-
genetic approach as described by Georges and Massey 
(1991), which would combine advanced reproductive 
technologies with marker-assisted selection, could dra-
matically shorten the amount of time needed to produce 
5 generations of animals but would be quite expensive. 
Chromosome selection provides many of the proposed 
benefits of velogenetics, such as the rapid introgres-
sion of desirable genes into a population (Odegård et 
al., 2009), without the costs of oocyte harvesting and 
embryo production. The generation interval will also 
decrease as use of young bull semen by dairy producers 
increases.

If the 30 best chromosomes in the US Holstein 
population were combined in a single animal, it would 
have a PTA NM$ of +$3,148 
(Figure 7), about 3.5 times larger than Freddie 

(Figure 5), whose PTA NM$ 
is +911. The current genetic trend for NM$ is 0.25 
SD/yr, and 1 SD = $163 (VanRaden and Multi-State 
Project S-1008, 2006). Assuming that genetic trend for 
NM$ remains constant, it would take approximately 77 
yr (about 15 generations) to increase the population 
average to match the genetic merit of the “supercow.”

The chromosomal PTA NM$ for the 30 animals with 
the best individual chromosomes in the US Holstein 
population are shown in Figure 8. These animals all 
have higher than average PTA NM$, which is the ex-
pected response to selection, but they tend to be out-
standing only for one or a few chromosomes. The first 
3 animals in the table have the largest PTA NM$ for 
BTA1, BTA2, and BTA3, respectively, and much lower 
PTA for the other 29 chromosomes. Animal 26 has the 
highest PTA NM$ for BTA26, but has an even higher 
value for BTA1, which is due, in part, to its inheritance 
of a superior chromosome from one of its parents, as 
well as the fact that BTA 1 (161,021,444 bp) is a much 
larger chromosome than BTA 26 (51,726,098 bp).

The potential value of chromosome selection lies not 
in producing a single genotype that will replace most 
other genotypes in the population, with a resulting rap-
id loss of genetic diversity, but in providing a tool that 
can be used to quickly propagate desirable haplotypes 
or eliminate undesirable ones. It may also be useful for 
the establishment of lines of cattle from which terminal 
crosses can be made to produce animals with genotypes 
optimized for different production systems, as is com-
mon in the swine and poultry industries.

Management of Genetic Heterozygosity. In-
breeding increased rapidly following the introduction of 
animal model genetic evaluations in 1989 (Wiggans et 
al., 1988), and there is concern that genomic selection 
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may make the problem worse. However, Daetwyler et 
al. (2007) have shown that the increased accuracy of 
genomic evaluations will allow for increased selection 
intensity while reducing inbreeding. This is due largely 
to a reduction in the magnitude of the between-family 
variance and increased emphasis on Mendelian sam-
pling over BLUP selection, which favored the selection 
of close relatives. High levels of inbreeding clearly 
negatively affect animal performance, but as the cost 
of high-density SNP genotyping and even full-genome 
sequencing continue to decrease it may be that in-
breeding as a measure of genetic health will cease to be 
important. Emphasis can be placed on regions where 
heterozygosity is associated with increased fitness, such 
as at the major histocompatibility complex, while still 
allowing fixation in regions where homozygosity is asso-
ciated with increased profitability. However, there is a 
clear need to aggressively conserve existing germplasm 
using resources such as the National Center for Genetic 

Resources Preservation (USDA-ARS, Fort Collins, 
CO).

In livestock breeding programs, maximizing profit-
ability or some similar measure of economic performance 
is of general interest, but that does not have to be the 
case. Chromosome selection may be useful in conserva-
tion schemes in which the selection objective is some 
measure of genetic diversity rather than productivity. 
Although genomic evaluations cannot be computed for 
small populations because there are insufficient data 
to accurately estimate SNP effects, homozygosity still 
can be calculated. In that case, selection could be for 
flat sparklines with values near the axis, which would 
represent some measure of heterozygosity near 50%. 
For example, chromosomes with greater than expected 
heterozygosity can be plotted as positive values, and 
those with lower than expected heterozygosity as nega-

tive values: . More sophisticated 
schemes in which particular chromosomes are preserved 
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Figure 7. Chromosomal PTA of lifetime net merit for a hypothetical animal whose genotype consists of the best chromosomes in the current 
US Holstein population. The sum of the individual chromosome effects is $3,148.

Figure 8. Sparklines showing the chromosomal PTA of lifetime net merit for the 30 animals in the US Holstein population with the best 
individual chromosomes. The best chromosome is indicated in black, and chromosome number increases across a row; the top left animal has 
the best chromosome 1; the animal in the bottom right has the best X chromosome.



can be imagined but may require further developments 
in haplotyping to achieve their full potential. The use 
of genomic relationships also may reduce the effect of 
incomplete and incorrect pedigrees on conservation 
programs (Oliehoek and Bijma, 2009).

Relationship Matrices

Three-Generation Pedigree with Complete 
Genotyping. All of the animals in O-Style’s 3-genera-
tion pedigree (Figure 9) have been genotyped, provid-
ing an opportunity to compare pedigree and genomic 
relationships. Coefficients of relationship and inbreed-
ing were calculated from the national pedigree file us-
ing all ancestors back to 1960, as well as with SNP 
marker data (VanRaden, 2008). Differences between 
the pedigree and genomic relationships were calculated 
by subtracting the numerator relationship matrix from 
the genomic relationship matrix. For illustrative pur-
poses, expected relationships were calculated assuming 
that O-Style’s grandparents were unrelated. The result-
ing matrices were visualized as heatmaps (Figure 10), 
graphics in which relationships are represented as colors 
along a spectrum. Values near 0 are dark (blue) and 
values near 1 are light (red); the color version of this 
figure is available in the online version of the journal; 
http://www.journalofdairyscience.org/.

The expected relationship matrix is presented in 
Table 1, and contains only 4 values, which correspond 
to unrelated animals (0.0), parent–progeny pairs (0.5), 
grandparent–grandprogeny relationships (0.25), and 
animals with themselves (1.0). The contents of this 
matrix are visualized in the subplot labeled “Expected” 
in Figure 10. Unrelated animals are denoted by dark-
colored squares on the off-diagonal, and light-colored 
squares indicate increasingly greater relationships. In-
dividual animals are represented by squares on the di-
agonal. There is no inbreeding in this pedigree because 
relationships beyond the grandparents were not consid-
ered, and the upper left 4 × 4 submatrix shows that 
none of the founders in this pedigree were related.

The pedigree relationships (Table 2) differ from the 
expected relationships because O-Style’s grandparents 
shared ancestors, with coefficients of relationship rang-
ing from about 0.05 to 0.11. Those relationships, labeled 
“Pedigree” in Figure 10, are shown in dark shades (blue 
in the color version). All of the animals shown in Figure 
9 are inbred 4 to 6%, although that inbreeding was not 
reflected in the expected pedigree.

Relationships among grandparents calculated from 
the marker data (Table 3) were more variable than the 
pedigree estimates, ranging from about 0.02 to 0.13, 
with animals more and less related than suggested 
by the pedigree. Coefficients of inbreeding were much 
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Figure 9. Three-generation pedigree for the bull Co-Op O-Style Oman Just-ET (001HO09167); all of the animals in the pedigree have been 
genotyped.



higher than in the pedigree data, ranging from 7 to 
16%. These differences are quite obvious when the sub-
plot labeled “Pedigree” in Figure 10 is compared with 
the expected and pedigree heatmaps.

The heatmap of differences between pedigree and 
genomic estimates (Figure 10) is labeled “Genomic 
– Pedigree,” and most values are near zero, with the 
notable exception of Ha-Ho Cubby Manfred-ET’s 
(014HO02090) coefficient of inbreeding, which was 
almost 11% higher in the genomic matrix, and the 

relationship between De-Matt Rudolph Teamster-ET 
(HOUSA17367125) and Kings-Ransom TM Deva CRI-
ET (HOUSA61089361), which was only one-third as 
large in the genomic matrix as the pedigree. The dif-
ferences between the pedigree and genomic matrices 
(Table 4) reflect errors in pedigree files that do not 
influence the genomic relationships, as well as genes 
that are identical-in-state among animals that have un-
related pedigrees. Identity-in-state cannot be directly 
accounted for in the construction of numerator rela-
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Figure 10. Colormaps showing coefficients of relationship (off-diagonals) and inbreeding (diagonals) for the bull Co-Op O-Style Oman Just-
ET (001HO09167), his parents, and grandparents. Relationships were calculated assuming that all grandparents were unrelated (Expected), 
using the US pedigree file (Pedigree), and using single nucleotide polymorphism data (Genomic). Differences between the pedigree and genomic 
values also were visualized (Genomic – Pedigree). Color version available in the online PDF.

Table 1. Expected numerator relationships in the 3-generation pedigree for Co-Op O-Style Oman Just-ET 
(001HO09167) assuming all grandparents are unrelated 

Manfred1 Jezebel1 Teamster2 Dima2 O-Man3 Deva3 O-Style

Manfred 1.00 0.00 0.00 0.00 0.50 0.00 0.25
Jezebel 0.00 1.00 0.00 0.00 0.50 0.00 0.25
Teamster 0.00 0.00 1.00 0.00 0.00 0.50 0.25
Dima 0.00 0.00 0.00 1.00 0.00 0.50 0.25
O-Man 0.50 0.50 0.00 0.00 1.00 0.00 0.50
Deva 0.00 0.00 0.50 0.50 0.00 1.00 0.50
O-Style 0.25 0.25 0.25 0.25 0.50 0.50 1.00

1Parents of O-Man, paternal grandparents of O-Style.
2Parents of Deva, maternal grandparents of O-Style.
3Parents of O-Style.



tionship matrices using only pedigree data, resulting in 
biased estimates of relationships and inbreeding using 
traditional methods.

Large Populations. Visualization of large rela-
tionship matrices may provide insight into population 
structure. Genomic coefficients of relationship and 
inbreeding for a group of 204 genotyped Holstein cows 
and bulls are shown in Figure 11 (color version avail-
able online; http://www.journalofdairyscience.org/). 
There is a block of largely unrelated cows in the upper, 
left corner of the matrix. The dark-colored rows and 
columns in that part of the matrix indicate that those 
cows are largely unrelated to the rest of the animals in 
the pedigree. Several lighter colored blocks of closely 
related animals can be seen moving from the top, left 
corner toward the bottom, right corner of the figure, 
and represent full- and half-sib families, including Fred-
die and many of his ancestors. 

Marker Effects

The SNP effects are updated with each genomic eval-
uation, as shown below, and an online query to display 
those data for each evaluated trait is available on the 
AIPL Web site (http://aipl.arsusda.gov/Report_Data/
Marker_Effects/marker_effects.cfm; accessed Sep. 10, 
2009). Markers on the same chromosome are plotted in 

the same color, and larger versions of each plot may be 
obtained by selecting an image or trait name (Figure 
12). Marker effects are useful for identifying which SNP 
have large effects on a trait. For example, a marker on 
BTA18 is associated with dystocia and conformation 
(Cole et al., 2009).

The query originally presented the absolute values of 
the marker effects, but those units have no clear inter-
pretation. The presence of markers with large effects 
on a chromosome also resulted in flattened plots with 
little apparent variation among markers. The query was 
revised in July 2009, and the marker solutions are now 
expressed in additive genetic standard deviations with 
an upper limit of 0.16 SD. The use of an upper limit 
on the SNP effects allows markers that explain lots 
of variation to stand out easily from the other mark-
ers and results in plots that more accurately show the 
variation among markers with small effects. When the 
actual value of 0.43 was used as the limit, the variation 
among the other marker effects was not visible in the 
graph, giving the mistaken impression that there was 
no variation among markers with small effects.

Although the query currently presents only results 
from the AIPL database, much more information could 
be provided. The National Center for Biotechnology 
Information (http://www.ncbi.nlm.nih.gov/; accessed 
Sep. 10, 2009) provides tools for accessing its databases 
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Table 2. Pedigree relationships in the 3-generation pedigree for Co-Op O-Style Oman Just-ET (001HO09167) 
including all ancestors back to 1960 

Manfred1 Jezebel1 Teamster2 Dima2 O-Man3 Deva3 O-Style

Manfred 1.053 0.090 0.091 0.105 0.571 0.098 0.335
Jezebel 0.090 1.037 0.051 0.099 0.563 0.075 0.319
Teamster 0.091 0.051 1.036 0.121 0.071 0.578 0.325
Dima 0.105 0.099 0.121 1.042 0.102 0.582 0.342
O-Man 0.571 0.563 0.071 0.102 1.045 0.087 0.566
Deva 0.098 0.075 0.578 0.582 0.087 1.061 0.574
O-Style 0.335 0.319 0.325 0.342 0.566 0.574 1.043

1Parents of O-Man, paternal grandparents of O-Style.
2Parents of Deva, maternal grandparents of O-Style.
3Parents of O-Style.

Table 3. Genomic relationships in the 3-generation pedigree for Co-Op O-Style Oman Just-ET 
(001HO09167) 

 Manfred1 Jezebel1 Teamster2 Dima2 O-Man3 Deva3 O-Style

Manfred 1.161 0.052 0.066 0.096 0.584 0.069 0.341
Jezebel 0.052 1.070 0.018 0.127 0.584 0.084 0.342
Teamster 0.066 0.018 1.096 0.114 0.024 0.618 0.300
Dima 0.096 0.127 0.114 1.094 0.125 0.600 0.392
O-Man 0.584 0.584 0.024 0.125 1.113 0.086 0.603
Deva 0.069 0.084 0.610 0.600 0.086 1.126 0.605
O-Style 0.341 0.342 0.300 0.392 0.603 0.605 1.120

1Parents of O-Man, paternal grandparents of O-Style.
2Parents of Deva, maternal grandparents of O-Style.
3Parents of O-Style.



over the Internet, as do many other institutions. A dis-
play can combine data from several sources to provide 
a comprehensive overview of the genomic context in 
which a marker of large effect is located. Such program-
ming interfaces can be used to combine data in novel 
ways, demonstrating the value of making those data 
easily accessible. However, such queries may require 

more effort to maintain because they depend on the 
correct operation of many systems.

CONCLUSIONS

Well-designed graphics can present more information 
in a smaller area than text or tables and provide ad-
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Figure 11. Genomic coefficients of relationship and inbreeding for a group of 204 genotyped Holstein cows and bulls. There is a block of 
largely unrelated cows in the upper left corner of the matrix. Several blocks representing full- and half-sib families, including the bull Badger-
Bluff Fanny Freddie (001HO08784) and many of his ancestors, can be seen in the lower right portion of the matrix. Color version available in 
the online PDF.

Table 4. Differences between the genomic and pedigree relationships in the 3-generation pedigree for Co-Op 
O-Style Oman Just-ET (001HO09167) 

 Manfred1 Jezebel1 Teamster2 Dima2 O-Man3 Deva3 O-Style

Manfred 0.109 −0.038 −0.025 −0.009 0.013 −0.030 0.006
Jezebel −0.038 0.034 −0.034 0.027 0.021 0.008 0.023
Teamster −0.025 −0.034 0.060 −0.008 −0.047 0.039 −0.024
Dima −0.009 0.027 −0.008 0.052 0.022 0.018 0.050
O-Man 0.013 0.021 −0.047 0.022 0.068 −0.001 0.037
Deva −0.030 0.008 0.039 0.018 −0.001 0.065 0.031
O-Style 0.006 0.023 −0.024 0.050 0.037 0.031 0.077

1Parents of O-Man, paternal grandparents of O-Style.
2Parents of Deva, maternal grandparents of O-Style.
3Parents of O-Style.



ditional insight into the data. Genomic data can be 
visualized at several levels, such as the distribution of 
marker effects across the genome, breeding values for 
individual chromosomes, and relationships among indi-
viduals in a population. Graphics can be produced at 
low cost in an automated manner and delivered through 
online query systems, providing users with novel infor-
mation at low cost.
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