
2613

J. Dairy Sci.  94 :2613–2620
doi:  10.3168/jds.2010-3877  
© American Dairy Science Association®,  2011 .

  ABSTRACT 

  Two methods of testing predictions from genomic 
evaluations were investigated. Data used were from 
the August 2006 and April 2010 official USDA genetic 
evaluations of dairy cattle. The training data set con-
sisted of both cows and bulls that were proven (had 
own or daughter information) as of August 2006 and 
included 8,022, 1,959, and 1,056 Holsteins, Jerseys, 
and Brown Swiss, respectively. The validation data set 
consisted of bulls that were unproven as of August 2006 
and were proven by April 2010 with 2,653, 411, and 132 
Holsteins, Jerseys, and Brown Swiss for the produc-
tion traits. Method 1 used the training animal’s pre-
dicted transmitting ability (PTA) from August of 2006. 
Method 2 used the training animal’s April 2010 PTA to 
estimate single nucleotide polymorphism effects. Both 
methods were tested using several regressions with the 
same validation animals. In both cases, the validation 
animals were tested using the deregressed April 2010 
PTA. All traits that had genomic evaluations from 
the official USDA April 2010 genetic evaluations were 
tested. Results included bias, differences from expected 
regressions (calculated using selection intensities), 
and the coefficients of determination. The genomic 
information increased the predictive ability for most 
of the traits in all of the breeds. The 2 methods of 
testing resulted in some differences that would affect 
interpretation of results. The coefficient of determina-
tion was higher for all traits using method 2. This was 
the expected result as the data were not independent 
because evaluations of the validation bulls contributed 
to their sires’ evaluations. The regression coefficients 
from method 2 were often higher than the regression 
coefficients from method 1. Many traits had regression 
coefficients that were higher than 2 standard deviations 
from the expected regressions when using method 2. 
This was partially due to the lack of independence of 
the training and validation data sets. Most traits did 
have some level of bias in the prediction equations, re-

gardless of breed. The use of method 1 made it possible 
to evaluate the increased accuracy in proven first-crop 
bull evaluations by using genomic information. Proven 
first-crop bulls had an increase in accuracy from the 
addition of genomic information. It is advised to use 
method 1 for validation of genomic evaluations. 
  Key words:    dairy cattle ,  genomic ,  prediction ,  valida-
tion 

  INTRODUCTION 

  The methods of validation for genomic evaluation 
are becoming an important topic as more countries 
use within-country genomic evaluations, and because 
of the impending multi-country genomic evaluations. 
This topic has received some attention in the literature, 
but most results have come from simulated studies. 
Mäntysaari et al. (2010) outline methods for genomic 
validation procedures that could be used with vary-
ing populations and data structures. Amer and Banos 
(2010) found it best to not overlap data in the training 
and validation data sets and showed the consequences of 
overlapping the training and validation data sets using 
a single national genetic evaluation run. However, there 
has been an acceptance of methods that does include 
overlap between the 2 data sets. Validation typically 
tests the regression of deregressed PTA on genomic 
predicted transmitting ability (GPTA) for animals not 
in the reference population. 

  Interbull currently allows for marketing of young ge-
nomically tested bulls from countries that have passed 
genomic validation (Interbull, 2010). Interbull allows 
2 types of validation methods for genomic evaluations 
(Interbull, 2010). The first method uses the current 
PTA of the training animals to make predictions for 
the validation animals, and the other method uses the 
training animals’ PTA from 4 yr before to make predic-
tions. Both methods test the GPTA using the current 
PTA of the validation animals (Interbull, 2010). Use 
of current PTA for both training and validation would 
be simpler than regenerating the proofs from 4 yr ago. 
Not all countries have access to data from 4 yr ago and 
regeneration of that data may not be possible. Some 
concern exists, however, about using the current PTA 
for genomic predictions because the validation bulls 
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contribute information back to their sires, which are 
typically training bulls, as demonstrated by Amer and 
Banos (2010). Another advantage of using 4-yr-old in-
stead of current PTA to make the predictions is that 
the gain in genomic reliability of first-crop proven bulls 
can be validated.

The objective of this study was to investigate 2 com-
mon methods of genomic evaluation validation using 
the genomic data available in the US dairy cattle popu-
lation.

MATERIALS AND METHODS

Data

The animals were genotyped using the BovineSNP50 
BeadChip (Illumina, San Diego, CA). Genotyped ani-
mals passed the general edits as explained by Wiggans 
et al. (2010b). A common set of 43,382 SNP were used 
across Holsteins, Jerseys, and Brown Swiss, 3 fewer than 
reported by Wiggans et al. (2010b) due to poor SNP 
performance and quality. The data included PTA from 
the official USDA genetic evaluation of dairy cattle from 
both the August 2006 and April 2010 genetic evalua-
tions. Proven cows and bulls were used in the training 
data set. A cow adjustment was applied for Holsteins 
and Jerseys to account for cow bias (Wiggans et al., 
2010a). The cow adjustment was not applied for Brown 
Swiss because of insufficient number of genotyped 
cows to estimate the adjustment factors (Wiggans et 
al., 2010a). The training data sets consisted of 8,022, 
1,959, and 1,056 Holsteins, Jerseys, and Brown Swiss, 
respectively. The training data set included foreign 
animals, some of which did not have any US daughters 
(e.g., Canadian Holsteins, Switzerland Brown Swiss, 
among others). The validation data set included only 
bulls that had US registration numbers and were un-
proven (no daughter information) in August 2006 and 
were proven (with daughters in at least 10 herds in the 
United States) in April of 2010. The number of valida-
tion bulls was 2,653, 411, and 132 Holsteins, Jerseys, 
and Brown Swiss, respectively, and varied slightly by 
trait. This was partially due to the 10-herd restriction, 
especially for the conformation traits because fewer 
herds classify. The number of validation bulls was much 
lower for calving traits because the bulls were younger 
when they had a traditional evaluation and many had 
a PTA in the 4-yr cut-off data set and, therefore, were 
not included in the validation data set for those traits.

The traits analyzed included all the traits with 
genomic evaluations in the official USDA April 2010 
genetic evaluation. Holstein conformation traits were 
analyzed with PTA provided by Holstein Association 
USA (Brattleboro, VT). The data from August 2006 

were converted to the January 2010 base so that they 
were consistent with the April 2010 data. The formula 
used for PTA base conversion was

 PTAnew = SD ratio × (PTAold – base change),  [1]

where PTAnew is the PTA on the 2010 base and PTAold 
is the PTA on the 2005 base. Specifics on the base 
change values and corresponding SD ratios are given by 
VanRaden et al. (2009a).

Methods

The training animals were used to compute predic-
tions, which were then applied and tested using the 
validation animals. The genomic predictions were 
computed using nonlinear genomic models (VanRaden, 
2008), which allowed the SNP with smaller effects to be 
regressed more toward zero. The model also included a 
polygenic effect (to be consistent with official USDA 
genomic evaluations), which was set to 0.10 so that 
90% of the genetic variation was from SNP effects and 
the other 10% inherited through the pedigree relation-
ships (VanRaden and Tooker, 2009b).

Two different methods of genomic validation were 
used. Method 1 used the genotypes and PTA of proven 
bulls and cows (had daughter or own information) from 
the August 2006 official USDA genetic evaluation, 
whereas method 2 used the PTA of the same animals 
but from the April 2010 USDA genetic evaluation using 
the traditional evaluation only.

In both methods, the SNP effects were then applied 
to the genotypes of the validation bulls and combined 
with parent average (PA) to produce GPTA. Those 
GPTA were tested using the deregressed PTA from 
April 2010 of the validation bulls. The validation data 
sets consisted of the same animals. The PTA used to 
make the SNP estimates were not the same for the 
training animals, resulting in different GPTA for the 
validation animals. The regressions to test the genomic 
predictions were

 DD = b0 + b1 × GPTA1 + e1 [2]

and

 DD = b0 + b2 × GPTA2 + e2,  [3]

where DD is the deregressed daughter deviations, com-
puted using the methodology explained by VanRaden 
et al. (2009b); b0 is the intercept; b1 is the regression 
coefficient for the GPTA1, where the SNP effects 
were calculated using the August 2006 PTA; b2 is the 
regression coefficient for the GPTA2 using the April 
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2010 PTA; and e is the random residual error. These 
equations were compared with each other and to the 
traditional evaluations. The traditional evaluation sub-
stituted PA for GPTA in equations 2 and 3 where the 
PA is either the August 2006 genetic evaluations (PA1) 
for equation 2 or the April 2010 genetic evaluations 
(PA2) for equation 3.

In addition to testing validation bulls, bulls in the 
training set that were first-crop proven bulls were also 
analyzed for gains in accuracy. The analysis used only 
new daughter information for the deregressed PTA, 
where the contribution of only new daughters was cal-
culated similarly to the calculation of Norman et al. 
(2007) with the formula

 D2 = [(n1 + n2) D1,2 – n1D1]/n2,  [4]

where D2 is the contribution of the daughters added 
over the last 4 yr; D1 is the contribution of daughters 
in the bull’s genetic evaluation 4 yr ago; D1,2 is the 
contribution of all of the daughters; n1 is the number of 
daughters that contributed to the PTA 4 yr ago; and n2 
is the number of daughters added between August 2006 
and April 2010.

The expected regressions [E(b1]] were calculated us-
ing the formula used by Interbull (Mäntysaari et al., 
2010) with the equation

 E(b1) = {1 – [i(i – x)]}/{1 – [i(i – x)r2]},  [5]

where i is the standardized selection differential for the 
genotyped bulls; x is the selection differential for the 
genotyped animals from the truncated data set; and 
r2 is the coefficient of determination of the validation 
bull.

RESULTS AND DISCUSSION

The results for method 1 and method 2 (equations 
2 and 3) and corresponding expected regression coef-
ficients for validation bulls are found in Tables 1, 2 and 
3 for Holsteins, Jerseys, and Brown Swiss, respectively. 
Squared correlations for the PA for the validation bulls 
using the August 2006 and April 2010 evaluations are 
found in Table 4 (PA was used instead of GPTA in 
equations 2 and 3). Table 5 contains the coefficients 
of determination for predicting later daughters of the 
first-crop training bulls for yield, health, and fertility 
traits (using equation 5 to identify only new daughter 
information). Table 5 also contains the regressions for 
the additional daughter information based on genomic 
information with the traditional PTA, the subset PTA 
that was computed using the pedigree relationship ma-
trix for the genotyped animals, and the direct genomic 

value (DGV), which includes the information from 
genomics only.

Almost all traits had an increase in the predictive 
ability from incorporating genomic information into 
the genetic evaluation over the traditional evaluations 
(PA). This is evident in the comparison of the squared 
correlation coefficients for Table 4 with Tables 1 to 3. 
For example, Holstein milk had a squared correlation 
coefficient of 0.19 for PA1 and one of 0.40 using GPTA1, 
which is a gain of 0.21 for the correlation coefficient. 
The Holsteins had the largest gains in accuracy for the 
traits, followed by Jerseys. These results were expected 
because the Holsteins had the largest training data set. 
The standard errors also were smallest for the Holstein 
breed, again due to the high number of validation bulls, 
followed by Jerseys and Brown Swiss. The expected 
regressions illustrate how much selection has occurred 
in the genotyped bulls for each trait, with the traits 
being closer to 1 having less selection pressure.

Both daughter calving ease and sire calving ease in 
the Brown Swiss analysis did not gain accuracy from 
genomic evaluations as can be seen in the comparison 
of Table 3 with Table 4. Several likely reasons could 
explain this. Fewer animals contributed to the calving 
ease analysis because some of the Brown Swiss training 
animals were foreign and did not have calving ease infor-
mation available. Another probable reason is extremely 
low numbers of validation bulls for calving traits, which 
could cause difficulty in properly validating the effect 
of genomic information for these traits. In addition, the 
heritability of the calving ease traits is very low, and 
lower heritability traits, especially with fewer daughters 
per bull, have been found to have lower squared correla-
tions (Luan et al., 2009; Guo et al., 2010).

Differences in squared correlation coefficients be-
tween the methods used for validation were fairly large 
for some traits. In most instances, the GPTA2 method 
of validation resulted in a higher squared correlation 
than that from the model using GPTA1 (equations 2 
and 3, respectively). This was consistent with findings 
from Amer and Banos (2010), who found that the 
apparent realized accuracy was often inflated when 
the son’s daughters contributed back into the breed-
ing values of the sires. The deregression of the PTA 
using a full pedigree should have limited the son’s 
daughter contribution to the deregressed proofs of the 
sires. More inflation probably existed using the USDA 
genetic evaluations because the cow information was 
used in the traditional and genomic evaluations. A son 
would contribute more information back into the dam 
evaluation than the sire evaluation because bulls typi-
cally have more offspring than cows. The inflation of 
regressions and squared correlation coefficients when 
using GPTA2 instead of GPTA1 was more evident in 
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Table 1. Regressions and squared correlations for prediction of Holstein validation data using GPTA1
1 or GPTA2

2 

Trait Expected

Regression  ± SE

n

Intercept ± SE Squared correlation

GPTA1 GPTA2 GPTA1 GPTA2 GPTA1 GPTA2

Milk (kg) 0.93 0.90 ± 0.02 0.96 ± 0.02 2,653 −10.4 ± 7.5 43.5 ± 6.4 40 45
Fat (kg) 0.88 0.94 ± 0.02 0.97 ± 0.02 2,653 −1.06 ± 0.29 1.5 ± 0.22 41 46
Protein (kg) 0.88 0.87 ± 0.02 0.91 ± 0.02 2,653 0.39 ± 0.22 1.5 ± 0.18 37 43
PL3 (mo) 0.77 1.03 ± 0.04 1.00 ± 0.03 2,653 −1.87 ± 0.08 −1.57 ± 0.07 24 32
SCS 0.81 0.88 ± 0.03 0.86 ± 0.02 2,653 −0.02 ± 0.004 −0.03 ± 0.004 29 36
DPR4 (%) 0.86 1.08 ± 0.04 1.04 ± 0.03 2,653 −0.24 ± 0.04 0.00 ± 0.04 21 31
Final score 0.76 0.86 ± 0.03 0.88 ± 0.02 2,598 0.56 ± 0.02 −0.01 ± 0.02 34 51
Stature 0.90 0.95 ± 0.02 1.01 ± 0.02 2,184 0.32 ± 0.02 −0.16 ± 0.02 49 66
Strength 0.91 0.91 ± 0.03 0.99 ± 0.02 2,184 0.35 ± 0.02 −0.06 ± 0.02 36 57
Dairy form 0.95 1.02 ± 0.03 1.07 ± 0.02 2,183 0.58 ± 0.02 −0.19 ± 0.02 42 60
Foot angle 0.82 0.90 ± 0.03 0.96 ± 0.02 2,183 0.57 ± 0.03 0.02 ± 0.03 35 56
Rear legs 0.96 0.94 ± 0.03 1.09 ± 0.02 2,184 0.04 ± 0.03 −0.05 ± 0.02 36 57
Body depth 0.92 0.93 ± 0.03 1.00 ± 0.02 2,184 0.45 ± 0.02 −0.10 ± 0.02 37 58
Rump angle 0.97 0.92 ± 0.02 1.07 ± 0.02 2,184 −0.15 ± 0.03 −0.06 ± 0.02 42 61
Rump width 0.86 0.86 ± 0.02 0.99 ± 0.02 2,184 0.32 ± 0.02 −0.12 ± 0.02 40 59
Fore udder 0.79 0.89 ± 0.03 0.99 ± 0.02 2,184 0.51 ± 0.02 −0.07 ± 0.02 37 57
Rear udder height 0.78 0.85 ± 0.03 0.90 ± 0.02 2,184 0.79 ± 0.03 −0.01 ± 0.03 31 51
Udder depth 0.83 0.87 ± 0.02 1.07 ± 0.02 2,184 0.10 ± 0.02 −0.15 ± 0.02 41 60
Udder cleft 0.84 0.94 ± 0.03 1.07 ± 0.02 2,184 0.40 ± 0.03 −0.14 ± 0.02 37 60
Front teat placement 0.87 0.88 ± 0.02 1.08 ± 0.02 2,129 0.23 ± 0.03 −0.14 ± 0.02 38 58
Teat length 0.95 0.93 ± 0.03 1.06 ± 0.02 2,184 −0.06 ± 0.02 0.02 ± 0.02 34 58
Sire CE5 (%) 0.85 0.79 ± 0.03 0.82 ± 0.02 1,618 2.6 ± 0.22 2.10 ± 0.18 28 30
Daughter CE (%) 0.86 0.90 ± 0.05 0.81 ± 0.03 1,622 −0.06 ± 0.43 1.34 ± 0.25 17 21
Sire stillbirth (%) 0.86 0.79 ± 0.07 0.82 ± 0.05 1,617 2.77 ± 0.53 2.08 ± 0.36 7 10
Daughter stillbirth (%) 0.97 0.86 ± 0.07 0.97 ± 0.04 1,611 0.79 ± 0.57 0.55 ± 0.34 9 18

1Training animal August 2006 data used to compute genomic PTA for validation animals.
2Training animal April 2010 data used to compute genomic PTA for validation animals.
3Productive life.
4Daughter pregnancy rate.
5Calving ease.

Table 2. Regressions and squared correlations for prediction of Jersey validation data using GPTA1
1 or GPTA2

2 

Trait Expected

Regression ± SE

n

Intercept ± SE Squared correlation

GPTA1 GPTA2 GPTA1 GPTA2 GPTA1 GPTA2

Milk (kg) 0.94 1.02 ± 0.05 1.09 ± 0.05 411 65 ± 14 99 ± 12 48 55
Fat (kg) 0.91 0.83 ± 0.05 0.95 ± 0.05 411 5.03 ± 0.59 5.90 ± 0.50 37 43
Protein (kg) 0.91 0.91 ± 0.06 0.99 ± 0.05 411 2.67 ± 1.00 3.8 ± 0.36 39 46
PL3 (mo) 0.91 1.08 ± 0.12 1.08 ± 0.09 411 −0.11 ± 0.18 −0.25 ± 0.17 16 25
SCS 0.93 0.71 ± 0.08 0.79 ± 0.07 411 0.06 ± 0.01 0.02 ± 0.01 17 22
DPR4 (%) 0.95 1.24 ± 0.15 1.27 ± 0.07 381 −0.02 ± 0.11 −0.06 ± 0.09 15 29
Final score 0.90 0.61 ± 0.07 0.93 ± 0.07 378 0.25 ± 0.05 0.09 ± 0.05 16 32
Stature 0.93 0.93 ± 0.05 0.95 ± 0.04 384 −0.10 ± 0.06 0.08 ± 0.05 46 54
Strength 0.94 0.94 ± 0.08 0.98 ± 0.06 384 −0.12 ± 0.04 −0.03 ± 0.04 29 39
Dairy form 0.90 0.63 ± 0.07 0.86 ± 0.07 370 0.16 ± 0.06 0.01 ± 0.05 18 30
Foot angle 0.98 0.78 ± 0.08 0.90 ± 0.07 383 0.01 ± 0.04 0.01 ± 0.03 21 31
Rear legs 0.97 1.04 ± 0.10 1.04 ± 0.08 323 −0.02 ± 0.04 0.01 ± 0.03 24 30
Rump angle 0.92 0.95 ± 0.06 1.10 ± 0.06 385 −0.08 ± 0.04 −0.02 ± 0.04 36 48
Rump width 0.96 0.97 ± 0.07 0.96 ± 0.06 383 −0.13 ± 0.04 −0.06 ± 0.03 34 43
Fore udder 0.98 0.85 ± 0.07 0.90 ± 0.05 293 0.07 ± 0.05 0.03 ± 0.04 35 46
Rear udder height 0.89 0.63 ± 0.06 0.86 ± 0.06 370 0.30 ± 0.06 0.10 ± 0.05 22 36
Udder depth 1.00 1.00 ± 0.08 0.97 ± 0.05 233 0.12 ± 0.07 0.14 ± 0.05 41 48
Udder cleft 0.90 0.74 ± 0.08 0.94 ± 0.07 385 0.09 ± 0.04 0.06 ± 0.04 22 33
Front teat placement 0.95 0.92 ± 0.07 0.97 ± 0.06 385 0.01 ± 0.05 −0.03 ± 0.05 34 42
Teat length 0.97 0.86 ± 0.07 0.91 ± 0.06 376 −0.05 ± 0.05 −0.01 ± 0.04 28 36

1Training animal August 2006 data used to compute genomic PTA for validation animals.
2Training animal April 2010 data used to compute genomic PTA for validation animals.
3Productive life.
4Daughter pregnancy rate.
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Table 3. Regressions and squared correlations for prediction of Brown Swiss validation data using GPTA1
1 or GPTA2

2 

Trait Expected

Regression ± SE

n

Intercept ± SE Squared correlation

GPTA1 GPTA2 GPTA1 GPTA2 GPTA1 GPTA2

Milk (kg) 0.85 0.65 ± 0.14 1.17 ± 0.15 132 −154 ± 46 −116 ± 33 14 31
Fat (kg) 0.93 0.53 ± 0.12 1.02 ± 0.13 132 −6.0 ± 1.6 −4.8 ± 1.1 14 32
Protein (kg) 0.88 0.54 ± 0.11 1.05 ± 0.14 132 −3.7 ± 1.3 −3.4 ± 1.0 14 31
PL3 (mo) 0.94 1.26 ± 0.29 1.38 ± 0.21 132 −1.9 ± 0.50 −1.05 ± 0.42 13 26
SCS 0.90 1.04 ± 0.18 1.20 ± 0.16 132 0.01 ± 0.02 0.00 ± 0.02 17 31
DPR4 (%) 0.91 0.55 ± 0.37 0.90 ± 0.25 132 0.23 ± 0.31 0.44 ± 0.27 2 9
Final score 0.93 1.37 ± 0.23 1.51 ± 0.24 109 −0.11 ± 0.07 −0.09 ± 0.08 25 24
Stature 0.96 1.07 ± 0.16 1.26 ± 0.14 120 0.06 ± 0.14 −0.08 ± 0.12 28 40
Strength 0.98 0.72 ± 0.20 0.87 ± 0.18 107 −0.09 ± 0.09 −0.05 ± 0.08 10 15
Dairy form 0.89 0.90 ± 0.25 1.11 ± 0.19 100 0.04 ± 0.13 −0.03 ± 0.11 12 22
Foot angle 1.00 1.34 ± 0.30 1.50 ± 0.25 112 0.04 ± 0.10 −0.02 ± 0.09 15 23
Rear legs, side 0.95 0.84 ± 0.16 0.96 ± 0.15 121 0.02 ± 0.08 0.08 ± 0.07 18 24
Rump angle 0.98 0.88 ± 0.17 1.01 ± 0.15 120 0.05 ± 0.13 0.12 ± 0.11 19 26
Rump width 0.96 0.97 ± 0.23 1.27 ± 0.18 113 −0.12 ± 0.09 −0.08 ± 0.07 14 29
Fore udder 0.96 0.98 ± 0.26 1.15 ± 0.19 87 0.00 ± 0.15 0.06 ± 0.12 15 24
Rear udder 0.84 1.01 ± 0.21 1.13 ± 0.15 115 0.07 ± 0.11 0.02 ± 0.10 18 31
Udder depth 0.96 1.09 ± 0.15 1.19 ± 0.14 120 0.11 ± 0.11 0.07 ± 0.10 31 37
Udder cleft 0.93 0.92 ± 0.17 0.99 ± 0.14 120 0.11 ± 0.11 0.08 ± 0.10 19 28
Front teat 0.93 1.28 ± 0.21 1.45 ± 0.17 115 −0.15 ± 0.13 −0.20 ± 0.11 26 36
Teat length 0.96 1.21 ± 0.18 1.13 ± 0.15 120 0.17 ± 0.15 0.10 ± 0.14 27 31
Rear legs, rear 0.99 −0.26 ± 0.10 1.51 ± 0.26 121 −0.09 ± 0.08 −0.01 ± 0.07 6 21
Sire CE5 (%) 0.88 0.41 ± 0.66 1.05 ± 0.22 47 3.9 ± 2.9 0.35 ± 1.13 1 15
Daughter CE (%) 0.93 1.56 ± 0.53 0.42 ± 0.20 46 −3.4 ± 2.9 3.03 ± 1.04 16 4

1Training animal August 2006 data used to compute genomic PTA for validation animals.
2Training animal April 2010 data used to compute genomic PTA for validation animals.
3Productive life.
4Daughter pregnancy rate.
5Calving ease.

Table 4. Squared correlations for traditional evaluations of validation bulls based on August 2006 or April 2010 parent average 

Trait

Squared correlation 2006 Squared correlation 2010

Holstein Jersey
Brown  
Swiss Holstein Jersey

Brown  
Swiss

Milk 0.19 0.36 0.05 0.32 0.47 0.20
Fat 0.17 0.30 0.06 0.29 0.40 0.21
Protein 0.20 0.31 0.05 0.33 0.42 0.19
Productive life 0.17 0.08 0.07 0.21 0.21 0.19
SCS 0.14 0.10 0.09 0.28 0.21 0.24
DPR1 0.16 0.07 0.01 0.28 0.27 0.09
Final score 0.19 0.11 0.10 0.35 0.34 0.18
Stature 0.23 0.36 0.15 0.41 0.49 0.26
Strength 0.16 0.21 0.07 0.37 0.36 0.15
Dairy form 0.19 0.12 0.06 0.39 0.30 0.16
Foot angle 0.24 0.11 0.06 0.45 0.24 0.16
Rear legs 0.18 0.20 0.14 0.41 0.27 0.19
Body depth 0.16 NA2 NA 0.37 NA NA
Rump angle 0.17 0.24 0.10 0.36 0.43 0.19
Rump width 0.21 0.24 0.10 0.42 0.39 0.25
Fore udder 0.12 0.22 0.15 0.34 0.42 0.27
Rear udder height 0.17 0.16 0.09 0.35 0.34 0.21
Udder depth 0.10 0.30 0.25 0.31 0.44 0.30
Udder cleft 0.21 0.16 0.11 0.43 0.34 0.20
Front teat placement 0.13 0.27 0.23 0.34 0.41 0.35
Teat length 0.10 0.19 0.17 0.34 0.31 0.22
Sire calving ease 0.21 NA 0.14 0.22 NA 0.14
Daughter calving ease 0.10 NA 0.16 0.13 NA 0.03
Sire stillbirth 0.06 NA NA 0.10 NA NA
Daughter stillbirth 0.07 NA NA 0.12 NA NA

1Daughter pregnancy rate.
2Not applicable.



the conformation traits, probably due to the number 
of daughters each validation bull had (fewer daughters 
than would typically be available from milk production 
traits). Holstein conformation traits were also affected 
by changes in processing pedigree and phenotypic data 
between August 2006 and April 2010, which was one 
of the reasons for higher squared correlations for the 
GPTA2 data when compared with differences between 
the methods in other traits. Amer and Banos (2010) 
also found that low heritability traits and low numbers 
of daughters for validation bulls caused higher inflation 
of results.

Interbull guidelines for passing genomic validation, 
which is necessary for the marketing of young bulls in 
other countries, requires that genomic regressions must 
fall within 2 SE of the expected regression (Interbull, 
2010). For the Holsteins, this gave a small acceptable 
interval for the regression coefficients. As it can be 
seen in Table 1, the production traits had an SE of 
0.02 for Holsteins, resulting in an interval of 0.08 for 
regression coefficients. In comparison, Table 3 shows 
the Brown Swiss SE were about 0.13 for production 
traits, making an interval size of 0.52. Meeting the re-
quirements would be less stringent for traits that had 
PA that performed well. The restriction to be within 
2 SE could be a disadvantage to countries with larger 
genotyped populations, because SE is a function of the 
SD and the number of animals genotyped. We did test 

the Holsteins by randomly using 25% of the validation 
bulls, and the regression coefficients were very similar 
to those in Table 1; however, the SE were about 0.05, 
which would cause many traits to pass validation (re-
sults not shown). Interbull uses a genetic SD interval 
and then allows for an adjustment based on SE above 
or below that for trend validation in traditional evalua-
tions (Interbull, 2008). A method similar to this would 
not penalize countries with more validation animals 
genotyped.

Most traits for Holsteins and Jerseys fall within 2 
SE of the expected regressions using GPTA1; however, 
using the GPTA2, many traits have too high of a re-
gression, indicating that the genomic predictions did 
better than the expected regressions (Tables 1 and 2). 
This is especially evident in the Holsteins where all 
type traits, fat yield, productive life, SCS, and daughter 
pregnancy rates were too high to pass current validation 
standards. A few traits existed for which the GPTA1 
regressions were outside of the 2 SE confidence interval 
of the expected regression, but the GPTA2 regression 
coefficient was within the confidence interval. This was 
the case for the Jerseys and Brown Swiss. The Brown 
Swiss passed using GPTA2 but not GPTA1 for fat yield, 
protein yield, and rear legs–rear view (Table 3). The 
regression coefficients were 0.53 for fat yield and 0.54 
for protein yield when GPTA1 was used; however, when 
GPTA2 was used, the regression coefficients went to 
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Table 5. Gains from genomic information for the training bulls that gained daughter information for yield, health, and fertility traits 

Trait1

Traditional, direct genomic, and genomic relationship model Traditional model

Traditional PTA ± SE Subset2 PTA ± SE DGV3 ± SE R2 PTA ± SE R2

Holstein            
 Milk (kg) −0.52 ± 0.33 0.45 ± 0.35 1.10 ± 0.10 0.78 0.89 ± 0.04 0.68
 Fat (kg) −0.53 ± 0.29 0.41 ± 0.30 1.21 ± 0.10 0.76 0.91 ± 0.04 0.62
 Protein (kg) −0.54 ± 0.30 0.53 ± 0.33 1.04 ± 0.11 0.73 0.89 ± 0.04 0.62
 PL (mo) 0.56 ± 0.21 −0.34 ± 0.22 0.77 ± 0.09 0.64 0.93 ± 0.03 0.60
 SCS 0.33 ± 0.25 −0.12 ± 0.28 0.90 ± 0.08 0.75 1.03 ± 0.03 0.69
 DPR (%) 1.36 ± 0.30 −1.19 ± 0.32 1.05 ± 0.11 0.68 1.14 ± 0.04 0.62
Jersey            
 Milk (kg) 1.29 ± 0.60 −1.29 ± 0.61 0.96 ± 0.27 0.63 0.93 ± 0.08 0.58
 Fat (kg) 0.88 ± 0.56 −0.59 ± 0.61 0.66 ± 0.22 0.72 0.93 ± 0.06 0.70
 Protein (kg) 1.43 ± 0.61 −1.46 ± 0.63 0.92 ± 0.25 0.55 0.79 ± 0.08 0.48
 PL (mo) 1.79 ± 0.64 −1.43 ± 0.69 0.73 ± 0.26 0.46 1.07 ± 0.09 0.43
 SCS −0.12 ± 0.72 −0.21 ± 0.75 1.27 ± 0.23 0.35 0.66 ± 0.09 0.25
 DPR (%) 0.36 ± 1.31 −0.79 ± 1.36 1.92 ± 0.37 0.52 1.22 ± 0.13 0.41
Brown Swiss            
 Milk (kg) −0.30 ± 0.50 −0.03 ± 0.64 0.97 ± 0.45 0.32 0.55 ± 0.10 0.26
 Fat (kg) 0.54 ± 0.47 −1.04 ± 0.60 0.94 ± 0.42 0.17 0.41 ± 0.12 0.13
 Protein (kg) −0.16 ± 0.39 −0.11 ± 0.54 0.75 ± 0.39 0.28 0.43 ± 0.09 0.24
 PL (mo) 0.50 ± 0.96 −0.33 ± 1.10 0.96 ± 0.55 0.50 1.07 ± 0.12 0.49
 SCS −0.99 ± 0.66 1.17 ± 0.74 1.14 ± 0.38 0.53 0.89 ± 0.10 0.46
 DPR (%) 0.41 ± 0.98 −0.32 ± 1.10 1.41 ± 0.53 0.48 1.34 ± 0.16 0.45

1PL = productive life; DPR = daughter pregnancy rate.
2Relationship matrix of the genomic animals.
3Direct genomic value.



1.02 and 1.05, respectively. The Jerseys passed using 
GPTA2 but not GPTA1 for SCS, final score, dairy form, 
foot angle, and rear udder height. Both Jerseys and 
Brown Swiss had fewer training and validation animals. 
The Holsteins did not have any traits that passed using 
GPTA2 instead of GPTA1, but rather had the opposite, 
where 7 of the type traits passed using GPTA1 but were 
too high for GPTA2. It was slightly surprising that the 
same genotyped population would pass using one form 
of validation but not the other.

Several countries use method 2 (GPTA2) or a ver-
sion thereof for genomic validation studies (Lund et al., 
2010). The results varied by country in that study, and 
the PA in their case was pedigree index, which, again, 
varied by country, due to data available. In most cases, 
the pedigree index did not account for dam informa-
tion. The genomic information produced high accuracy 
in that study.

Another concern with the use of GPTA2 for validation 
purposes was the comparison to traditional methods. 
Typically, the PA is used for comparison purposes and 
to assess the gains from genomic evaluations, and when 
GPTA2 is used, the use of PA2 would seem logical. How-
ever, the USDA genetic evaluations use the dam’s in-
formation, which is correlated with the son’s later data 
and causes rather large inflation of the PA regression 
coefficient, as evident in Table 5. However, the gains in 
the accuracy were not inflated using GPTA2 because 
PA2 was higher than PA1 by more than GPTA2 was 
higher than GPTA1. The average difference between 
the squared correlation coefficients for PA1 and PA2 
was −0.16, −0.15, and −0.09 for Holsteins, Jerseys, 
and Brown Swiss, respectively. In contrast, the average 
difference in the squared correlation coefficients from 
GPTA1 and GPTA2 was −0.14, −0.10, and −0.09 for 
Holsteins, Jerseys, and Brown Swiss, respectively. This 
could cause lower reported gains of accuracy associated 
with using genomic information.

Several instances exist where the validation using 
GPTA1 would be extremely difficult and would not be 
the ideal method. For example, when countries combined 
their genomic reference populations, the countries would 
have to use phenotypic data from international multi-
trait across-country evaluations (MACE) because some 
of the training bulls (and in some cases, most training 
bulls) would not have daughters in the domestic coun-
try. This is problematic because many countries have 
made changes to their traditional domestic evaluations 
in the last 4 yr. Evaluation systems that have changed 
are hard to validate when the MACE values from 4 yr 
ago are used. The problem could be addressed by hav-
ing Interbull conduct a special traditional evaluation 
with the countries’ current models by truncating the 
data from 4 yr ago. National PTA could be submitted 

to Interbull for a special MACE and then results from 
the MACE could be used for genomic validation for 
the member countries. This would solve the problems 
associated with using GPTA2 and also the difficulties 
associated with obtaining valid data for GPTA1.

Even though the main focus of genomics has been 
on the young bulls, first-crop bulls also gain accuracy 
through genomic predictions. Table 5 indicates that 
training bulls that gained at least 10 daughters from 
August 2006 to April 2010 also benefited from gains 
in accuracy from genomic evaluations. On average, the 
squared correlation for the production traits increased 
by 0.10, 0.05, and 0.05 for Holsteins, Jerseys, and 
Brown Swiss, respectively. The traits that often take 
longer to evaluate, such as productive life, also had 
gains from genomic information, although those tended 
to be smaller gains. For example, Holstein productive 
life went from a squared correlation of 0.60 to 0.64. The 
gains for first-crop bulls were not able to be quantified 
using method 2 for genomic validation.

CONCLUSIONS

Genomic validation methods should not use overlap-
ping data. Both methods illustrated the gains in predic-
tive ability by using genomic evaluation over the PA. 
Regardless of the method used, genomic information 
increased predictive ability for most traits. Using the 
actual truncated data is advised, and this most closely 
resembles the real-life point where the decisions are 
made. A validation approach that does not penalize 
large countries with large validation populations is 
needed.
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