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  ABSTRACT 

  Multibreed models are currently used in traditional 
US Department of Agriculture (USDA) dairy cattle 
genetic evaluations of yield and health traits, but 
within-breed models are used in genomic evaluations. 
Multibreed genomic models were developed and tested 
using the 19,686 genotyped bulls and cows included 
in the official August 2009 USDA genomic evaluation. 
The data were divided into training and validation sets. 
The training data set comprised bulls that were daugh-
ter proven and cows that had records as of November 
2004, totaling 5,331 Holstein, 1,361 Jersey, and 506 
Brown Swiss. The validation data set had 2,508 Hol-
stein, 413 Jersey, and 185 Brown Swiss bulls that were 
unproven (no daughter information) in November 2004 
and proven by August 2009. A common set of 43,385 
single nucleotide polymorphisms (SNP) was used for all 
breeds. Three methods of multibreed evaluation were 
investigated. Method 1 estimated SNP effects separate-
ly within breed and then applied those breed-specific 
SNP estimates to the other breeds. Method 2 estimated 
a common set of SNP effects from combined genotypes 
and phenotypes of all breeds. Method 3 solved for cor-
related SNP effects within each breed estimated jointly 
using a multitrait model where breeds were treated as 
different traits. Across-breed genomic predicted trans-
mitting ability (GPTA) and within-breed GPTA were 
compared using regressions to predict the deregressed 
validation data. Method 1 worked poorly, and coef-
ficients of determination (R2) were much lower using 
training data from a different breed to estimate SNP 
effects. Correlations between direct genomic values 
computed using training data from different breeds 
were less than 30% and sometimes negative. Across-
breed GPTA from method 2 had higher R2 values than 
parent average alone but typically produced lower R2

values than the within-breed GPTA. The across-breed 
R2 exceeded the within-breed R2 for a few traits in the 

Brown Swiss breed, probably because information from 
the other breeds compensated for the small numbers 
of Brown Swiss training animals. Correlations between 
within-breed GPTA and across-breed GPTA ranged 
from 0.91 to 0.93. The multibreed GPTA from method 
3 were significantly better than the current within-breed 
GPTA, and adjusted R2 for protein yield (the only trait 
tested for method 3) were highest of all methods for all 
breeds. However, method 3 increased the adjusted R2

by only 0.01 for Holsteins, ≤0.01 for Jerseys, and 0.01 
for Brown Swiss compared with within-breed predic-
tions. 
  Key words:    dairy cattle ,  genomic prediction ,  multi-
breed 

  INTRODUCTION 

  Genomic evaluations of dairy cattle have been of-
ficial in the United States since January 2009 for Hol-
steins and Jerseys and since August 2009 for Brown 
Swiss. Since that time, interest has been increasing in 
genomic evaluations from the smaller populations of 
US dairy breeds, and some breeds are already submit-
ting genotypes for parentage purposes (Wiggans et 
al., 2012). Interest also exists in including crossbred 
dairy cattle in US genomic evaluations. Currently, US 
traditional evaluations of calving, yield, and health 
traits (Cole et al., 2005; VanRaden et al., 2007) include 
both purebreds and crossbreds in the same model, but 
US genomic evaluations are computed only within 
breed. Animals with genotypes that contain too many 
breed-specific alleles from another breed, such as first-
generation crossbreds, backcrosses, and 3-breed crosses, 
do not receive genomic evaluations (G. R. Wiggans, 
Animal Improvement Programs Laboratory, Agricul-
tural Research Service, US Department of Agriculture, 
Beltsville, MD,, personal communication). 

  Other researchers have investigated using more than 
one breed in the same genomic evaluation system. An 
across-breed genomic evaluation has been implemented 
in New Zealand (Harris and Johnson, 2010) in which 
the pure Holsteins, Holstein-Friesians, crossbreds, and 
Jerseys are used as an admixture for a training data set, 
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and then the SNP estimates are applied to the valida-
tion data set regardless of breed of origin. Hayes et al. 
(2009) also reported results for Jerseys and Holsteins in 
which 2 different methods were used. The first method 
applied SNP effects from the other breeds to the breed 
of interest and resulted in poor estimations and no gain 
in accuracy. The second method used all breeds as one 
population and was more accurate than parent average 
but not as effective as the within-breed analysis. Snel-
ling et al. (2009) evaluated the USDA Meat Animal 
Research Center crossbred line using common SNP ef-
fects across breed but did not have sufficient numbers 
of each breed to estimate separate SNP effects.

Simulation studies have indicated that denser mark-
ers are needed before across-breed genomics is used on a 
wider scale (de Roos et al., 2008; Kizilkaya et al., 2010; 
Toosi et al., 2010). Early results from a high-density 
(~700,000 SNP) study in New Zealand indicated no 
increase in the all-breed genomic prediction accuracy 
when the high-density chip was used; however, num-
bers of high-density genotypes for Jerseys were limited 
and the rest were imputed (Harris et al., 2011). These 
studies all investigated using single-trait methodology, 
where SNP effects were assumed the same in every 
breed.

Makgahlela et al. (2011) investigated multitrait ge-
nomic predictions in Nordic Red cattle by fitting an 
interaction of SNP effects with breed. They found little 
advantage to this method over treating the populations 
as homogeneous, but the authors suggested that the 
low accuracies might be due to the similarity in lines 
that were tested. Few or no other authors have applied 
multitrait methodology to genomic evaluations across 
breeds.

The objective of this study was to investigate 3 meth-
ods of genomic evaluation using purebred Holstein, Jer-
sey, and Brown Swiss genotypes to predict independent 
daughter deviations. The 3 methods compared were 
(1) SNP effects estimated separately within each breed 
and then tested in another breed, (2) a common set of 
SNP effects estimated from combined genotypes and 
phenotypes of all breeds, and (3) correlated SNP effects 
within each breed estimated jointly using the multitrait 
model. These methods were validated along with par-
ent averages (PA) using multiple regression to preserve 
the traditional within-breed information when testing 
the information added from other breeds.

MATERIALS AND METHODS

Animals

The animals were genotyped using the BovineSNP50 
Genotyping BeadChip (Illumina, San Diego, CA), and 

all genotyped animals (proven) from the US Depart-
ment of Agriculture (USDA) August 2009 genomic 
evaluation were included in the data set.

The data were divided into a training data set and a 
validation data set. The training data set included bulls 
that had daughter information and cows that had their 
own information by November 2004, including 5,331 
Holstein, 1,361 Jersey, and 506 Brown Swiss animals 
of which 928, 212, and 40 were cows, respectively. The 
validation data included US proven bulls that had 
no daughter information in November 2004, but had 
daughter information in the August 2009 evaluation, 
and included 2,508 Holstein bulls, 413 Jersey bulls, and 
185 Brown Swiss bulls. No known crossbred animals 
had been genotyped. A full pedigree was used for all 3 
breeds; the Holsteins had 80,396 ancestors, the Jerseys 
had 17,243 ancestors, and the Brown Swiss had 4,682 
ancestors in the pedigrees. Further analyses of the gen-
otypes and relationships among breeds were presented 
in VanRaden et al. (2011).

The common set of 43,385 SNP (Wiggans et al., 
2010) was used for all 3 breeds. The SNP had been 
chosen to (1) have a minor allele frequency of >0.01 in 
at least one breed, (2) have <10% missing genotypes, 
and (3) have <2% parent-progeny conflicts across all 
animals. Previous tests had revealed that reliabilities 
increased by 0.4% for Holsteins and 0.3% for Jerseys, 
and decreased by 0.2% for Brown Swiss when within-
breed predictions included all 43,385 SNP instead of 
excluding SNP with <2% minor allele frequency (Wig-
gans et al., 2010).

Methods

Method 1 computed genomic evaluations of valida-
tion bulls in a given breed using SNP solutions from 
that same breed or from each other breed. The animals 
from a different breed contributed to the training data 
but not the validation data, whereas time separation 
was required within a breed to make the validation data 
independent of the training data. Therefore, the SNP 
solutions used from the other breeds were the solutions 
from the official USDA August 2009 genomic evalu-
ation, whereas the within-breed SNP solutions used 
input data that would have been available in Novem-
ber 2004. The SNP estimates were calculated using a 
nonlinear model with a heavy-tailed distribution, which 
allowed SNP with smaller effects to be regressed toward 
zero (VanRaden, 2008).

Method 2 (across-breed) treated all breeds as the 
same population. The effects were estimated using all 
information from November 2004, with the base allele 
frequency estimated as a simple average rather than a 
weighted average of the base frequency for each breed. 
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Thus, the across-breed base frequency was the sum of 
0.333 times the Holstein, Jersey, and Brown Swiss base 
frequencies and should better estimate the true ances-
tral frequency before the breeds diverged than weight-
ing by current population size. Base frequencies within 
each breed estimate the more recent allele frequencies 
of the earliest animals in the pedigree file. Within-
breed PTA were each converted to the Holstein 2004 
base PTA using breed differences from the traditional 
evaluation, in which all breeds are compared directly in 
the same model. Additional adjustments were required 
for the 2005 base change because the all-breed evalua-
tion was not implemented until 2007 (VanRaden et al., 
2007). These across-breed PTA were then deregressed 
and used in computing genomic predictions.

Method 3 (multibreed) used a multitrait model with 
SNP effects in different breeds treated as correlated 
effects. Predictions were computed assuming that SNP 
effect correlations were the same for each breed pair; 
for example, 0.20 for each pair. Because of the compu-
tation required, only 3 levels of correlation were tested: 
0.20, 0.30, and 0.55. This method is similar to the mul-
titrait across-country evaluation of genotypes described 
by VanRaden and Sullivan (2010) except breeds replace 
countries as the traits. The data included only purebred 
animals so their information contributed to only their 
respective breed; therefore, no correlation existed be-
tween residual effects in different breeds. If crossbreds 
were present in the population, the equations would 
need to be expanded by assigning SNP contributions 
according to breed composition so that records from 
crossbreds would not be double counted. An example 
on how to expand these equations to account for cross-
breds is found in Makgahlela et al. (2011).

Mathematically, the 3 methods can be described us-
ing notation adapted from VanRaden (2008) as follows. 
Centered genotypes for the training animals of breed i 
are in Zi. Genotypes are coded 0, 1, and 2 and centered 
by subtracting 2pi, where pi is base frequency of the 
second allele in breed i, and then divided by the sum of 
2pi (1 − pi) across loci. For breed i, the model contains 
unknown mean bi with X defined as the column vector 
1, and the vector of SNP effects is gi: 
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Matrix Ki is diagonal with diagonal elements related 
to marker variances that change across iterations due 
to the heavy-tailed prior as the size of SNP effects 
change. Matrix Ri

-1 is diagonal with diagonals equal to 

daughter equivalents, and yi is a vector of deregressed 
evaluations.

The DGV for validation animals in breed j using 
SNP effects from breed i are obtained as

DGVj = bi + Zj gi.

Method 2 used the same math as method 1 except 
that the i subscripts are removed because the Zi 
are adjoined into one Z and all breeds contribute to 
estimating one b and one g. Method 3 results in a 
larger system of equations to solve for all SNP effects 
simultaneously. The model is analogous to the multi-
trait model of VanRaden and Sullivan (2010), but the 
algorithm estimates SNP effects and sums these instead 
of including a genomic relationship matrix:
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The equations are demonstrated for 2 breeds but are 
simple to expand to more breeds. Elements of K11, K12, 
K21, and K22 are the Kronecker product of T−1 with di-
agonal matrix K, where T is the correlation matrix for 
SNP effects among breeds with all correlations assigned 
a common parameter value (0.20, 0.30, and 0.55).

The iterative method of VanRaden (2008) was used 
to solve the nonlinear equations. Methods 1, 2, and 3 
did not include a polygenic effect because that was not 
included in the official USDA model at the time this 
research was conducted.

Validation

A multiple regression model that included an inter-
cept, a regression on PA, and a regression on DGV 
was used to predict the traditional evaluations of the 
validation bulls. An adjusted coefficient of determina-
tion (R2) was used for comparison purposes because 
tests that included only the intercept and regression 
on PA had 2 degrees of freedom, whereas predictions 
with an intercept and regressions on both DGV and PA 
had 3 degrees of freedom. Genomic PTA (GPTA) was 
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defined as the sum of the intercept, the PA, and the 
DGV times the respective partial regressions.

The traits investigated using methods 1 and 2 were 
milk yield, fat yield, protein yield, productive life, SCS, 
and daughter pregnancy rate. Conformation traits and 
net merit were not investigated because conversions 
from within-breed to all-breed scale were not available 
as breeds differ in traits included in the overall index 
such as calving traits. Because of the intensive compu-
tation time, only protein yield was tested for method 3.

RESULTS AND DISCUSSION

Results for method 1 (using another breed’s SNP es-
timates) from validation regressions are compared with 
the traditional PA and within-breed GPTA in Table 1. 
In all cases, the within-breed GPTA produced a higher 
accuracy than the PA; this was the expected result 
and has been documented in the literature (Harris and 
Johnson, 2010; Wiggans et al., 2010). The Holstein 
breed had a larger population and had a larger increase 
in R2, which was also the expected result. A slightly 
surprising result was that the R2 for PA of the produc-
tion traits for Brown Swiss were very low (0.02–0.09). 
This may be due to the sample and small number of 

Brown Swiss validation bulls. It is partially due to using 
an adjusted R2 value, which decreases the R2 slightly. 
Additionally, evaluations of cows were used in the pre-
dictor set without any adjustment to their yield traits, 
whereas Wiggans et al. (2011) later introduced cow 
adjustments to the GPTA and PA. The combination of 
these could have caused the low accuracy of using PA 
for predictions for yield traits in the Brown Swiss.

Only 9 of the 36 tests showed significance (P < 0.05) 
when using another breed’s SNP solutions to predict 
within-breed performance. Milk and fat yield predic-
tions were significant for both Holstein and Jersey 
when using SNP estimates from the reciprocal breed. 
This result was not that surprising because DGAT1 
has been shown to have a large effect on those traits 
for Holsteins and Jerseys (Spelman et al., 2002). We 
did not find the same effect on those traits for Brown 
Swiss, but Winter et al. (2002) documented that the 
DGAT1 allele is present albeit at a low frequency in 
Brown Swiss. Even though effects for milk and fat in 
the Holsteins and Jerseys were significant, correlations 
between DGV computed using SNP effects from dif-
ferent breeds were not high. These correlations were 
<0.30 for all traits tested, and only 0.07 for milk when 
DGV for Jersey validation animals were computed us-

Table 1. Adjusted coefficients of determination (R2)1 and P-values for regression of deregressed evaluations on genomic PTA (GPTA) derived 
from individual breed SNP effects and GPTA derived from all breeds combined SNP effects (all-breed, method 2) 

Predicted trait

Holstein 
GPTA

Jersey 
GPTA

Brown Swiss 
GPTA

Parent 
average

All- 
breed

P-value R2 P-value R2 P-value R2 R2 R2

Holstein (n = 2,507)         
 Milk yield <0.001 0.50 <0.001 0.31 0.370 0.31 0.30 0.46
 Fat yield <0.001 0.48 <0.001 0.25 0.038* 0.24 0.24 0.45
 Protein yield <0.001 0.50 0.297 0.31 0.200 0.31 0.31 0.47
 PL2 <0.001 0.43 0.436 0.33 0.176 0.33 0.33 0.42
 SCS <0.001 0.45 0.759 0.36 0.364 0.36 0.36 0.45
 DPR3 <0.001 0.46 0.058 0.41 0.495 0.41 0.41 0.46
         
Jersey (n = 413)         
 Milk yield <0.001 0.50 <0.001 0.55 0.148 0.49 0.49 0.52
 Fat yield 0.005 0.39 <0.001 0.48 0.331 0.38 0.38 0.44
 Protein yield 0.685 0.44 <0.001 0.49 0.829 0.44 0.44 0.47
 PL 0.042 0.27 <0.001 0.31 0.004* 0.27 0.26 0.29
 SCS 0.314 0.33 <0.001 0.35 0.447 0.33 0.33 0.35
 DPR 0.363 0.35 <0.001 0.38 0.813 0.35 0.35 0.38
         
Brown Swiss (n = 185)         
 Milk yield 0.108 0.10 0.803 0.09 0.045 0.11 0.09 0.15
 Fat yield 0.150 0.02 0.750 0.02 0.001 0.09 0.02 0.13
 Protein yield 0.258 0.10 0.872 0.09 0.086 0.10 0.09 0.13
 PL 0.034 0.41 0.380 0.40 0.001 0.42 0.40 0.43
 SCS 0.003 0.34 0.337 0.31 0.001 0.42 0.32 0.41
 DPR 0.267 0.42 0.137 0.43 0.001 0.49 0.42 0.48
1Adjusted to account for adding variables into the model.
2Productive life.
3Daughter pregnancy rate.
*Indicates a negative partial regression on the direct genomic value.
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ing Jersey or Holstein SNP effects, for example. These 
findings are consistent with those found by Hayes et al. 
(2009), in which Holstein and Jersey had poor correla-
tions when the data were trained in the opposite breed 
only. In 2 cases, the correlations between DGV were 
slightly negative (results not shown). In all cases, the 
within-breed GPTA had a higher R2 than that using 
SNP effects from another breed. This is consistent with 
literature (Hayes et al., 2009; Pryce et al., 2011).

Results for method 2 are also given in Table 1. The 
across-breed GPTA were significant (P < 0.05) for 
all the traits tested in all the breeds compared with 
PA alone. However, the across-breed GPTA were not 
more accurate than within-breed GPTA for the traits 
in Holsteins, and this is consistent with what others 
have found (Hayes et al., 2009; Pryce et al., 2011). The 
across-breed GPTA were not as accurate as the within-
breed GPTA in Jerseys for yield and productive life, 
but were equal for daughter pregnancy rate and SCS, 
which could be a function of the low heritability of 
those traits. The Brown Swiss across-breed GPTA had 
a higher accuracy than the within-breed GPTA for yield 
traits and productive life; however, daughter pregnancy 
rate and SCS were higher in the within-breed model. 
This is most likely a function of the limited number of 
predictor animals in the Brown Swiss data set.

The correlations between the within-breed and 
across-breed DGV for yield traits are in Table 2. The 
correlations ranged from 0.842 to 0.921 for all breeds. 
The Holsteins tended to have higher correlations than 
the other 2 breeds. This was not surprising because the 
Holsteins made up 74% of the training population and 
would have more influence on the SNP solutions.

The results for the 3 levels of correlation for method 
3 (multibreed) are in Table 3. The among-breed SNP 
correlation parameter of 0.30 provided the highest R2 
of the 3 correlations tested. With a correlation of only 
0.30, the maximum reliability contributed by another 
breed would be 0.302 = 0.09. Optimization of the cor-
relation could result in slightly higher accuracy, and op-
timal correlations for each breed pair could also result 
in higher accuracy in a multibreed national genomic 

evaluation. Different correlations between different 
breeds and for different traits could be used, analogous 
to defining specific heterosis instead of general hetero-
sis in a traditional all-breed model. Makgahlela et al. 
(2011) presented variance component estimation that 
could be used for this procedure.

Computational demands differed between the meth-
ods. Computational costs for method 3 (multibreed) 
were about 3 times the cost of the Holstein within-
breed analysis and were the highest of the methods 
tested. The computational costs from method 2 were 
about the same as the combined computational costs 
from computing genomic evaluations for each of the 3 
breeds separately.

Comparisons of method 3 with the other methods 
for protein yield are in Table 4. Method 3 (multibreed, 
using a correlation of 0.30) resulted in the highest R2 
for Holsteins and Jerseys and the second highest for 
Brown Swiss. The increases in R2 above the within-
breed R2 were relatively small (≤0.01). Because gains 
in R2 were small and computational demands high, ad-
ditional traits and correlation levels were not tested. A 
nice feature of method 3 is the high correlation (>0.99) 
of multibreed and within-breed DGV as shown in Table 
2. Correlations were much lower (0.84 to 0.92) between 
method 2 and within-breed DGV because SNP effects 
had to be shared by all breeds. Method 3 also pre-
vented data from the largest breed from dominating 
the smaller breeds. The method 3 results were more 
favorable than those reported by Makgahlela et al. 
(2011), who found low reliabilities with the multitrait 

Table 2. Product moment correlations between within-breed direct genomic values (DGV) and all-breed and multibreed DGV using validation 
bulls for yield traits 

Trait

Method 2 (all breeds)
Method 3 (multibreed) 
Correlation level = 0.30

Holstein 
(n = 2,507)

Jersey 
(n = 413)

Brown Swiss 
(n = 185)

Holstein 
(n = 2,507)

Jersey 
(n = 413)

Brown Swiss 
(n = 185)

Milk yield 0.921 0.853 0.842 —1 — —
Fat yield 0.904 0.885 0.855 — — —
Protein yield 0.921 0.884 0.883 0.997 0.994 0.996
1Only protein yield was tested for the multibreed method.

Table 3. Effect of assumed correlation parameter on adjusted 
coefficients of determination for multibreed genomic evaluation of 
protein yield 

Breed

Correlation level

0.20 0.30 0.55

Holstein 0.50 0.51 0.50
Jersey 0.49 0.49 0.49
Brown Swiss 0.11 0.11 0.11
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model in Nordic Red dairy cattle, which could be due 
to the different population structures. Higher density 
chips should increase SNP correlations and reliability of 
multibreed evaluations, even though early tests in New 
Zealand (Harris et al., 2011) did not obtain reliability 
gains.

CONCLUSIONS

Using another breed’s SNP effects alone did not im-
prove predictions of future performance of bulls from 
the other breeds. The smaller breeds (those with fewer 
observations) gained the most from using all the breeds 
in a combined genomic evaluation. The multitrait 
method did increase the accuracy slightly; however, 
computational demands also increased. For popula-
tions with crossbred animals mixed with the purebreds, 
the implementation of a combined population training 
set or a multitrait approach would be very appealing; 
however, not much demand for that exists yet in the 
current US dairy industry. A denser SNP panel could 
increase the gains in accuracy for a multibreed genomic 
evaluation using purebred dairy cattle.
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Table 4. Adjusted coefficients of determination using traditional and 3 methods of genomic evaluation for protein yield 

Validation  
breed

Within-breed 
(traditional) Single-breed training data (method 1)

All-breed 
(method 2)

Multibreed 
(Correlation = 0.30) 

(method 3)

Parent average
Holstein  
GPTA1

Jersey  
GPTA

Brown Swiss  
GPTA

Across-breed  
GPTA

Multibreed  
GPTA

Holstein 0.31 0.50 0.31 0.31 0.47 0.51
Jersey 0.44 0.44 0.49 0.44 0.47 0.49
Brown Swiss 0.09 0.10 0.09 0.10 0.11 0.11
1Genomic PTA.
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