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ABSTRACT

Genetic models convert data into estimated breeding 
values and other information useful to breeders. The 
goal is to provide accurate and timely predictions of 
the future performance for each animal (or embryo). 
Modeling involves defining traits, editing raw data, 
removing environmental effects, including genetic by 
environmental interactions and correlations among 
traits, and accounting for nonadditive inheritance or 
nonnormal distributions. Data include phenotypes and 
pedigrees during the last century and genotypes within 
the last decade. The genomic data can include single 
nucleotide polymorphisms, quantitative trait loci, in-
sertions, deletions, and haplotypes. Subsets must be 
selected to reduce computation because total numbers 
of variants that can be imputed have increased rapidly 
from thousands to millions. Current computation us-
ing 60,671 markers takes just a few days. Nonlinear 
models can account for the nonnormal distribution of 
genomic effects, but reliability is usually better than 
that of linear models only for traits influenced by 
major genes. Numbers of genotyped animals have also 
increased rapidly in the joint North American database 
from a few thousand in 2009 to over 1 million in 2015. 
Most are young females and will contribute to estimat-
ing allele effects in the future, but only about 150,000 
have phenotypes so far. Genomic preselection can bias 
traditional animal models because Mendelian sampling 
of phenotyped progeny and mates is no longer expected 
to average zero; however, estimates of bias are small in 
current US data. Single-step models that combine pedi-
gree and genomic relationships can account for prese-
lection, but approximations are required for affordable 
computation. Traditional animal models may include 
all breeds and crossbreds, but most genomic evaluations 
are still computed within breed. Models that include 
inbreeding, heterosis, dominance, and interactions can 

improve predictions for individual matings. Multitrait 
genomic models may be preferred for traits with many 
missing records or when foreign records are included as 
pseudo-observations, but most countries use multitrait 
traditional evaluations followed by single-trait genomic 
evaluations. Genomic reliabilities are about 70% for the 
more heritable traits. Researchers must choose from 
many available models and explain how the models 
work so that breeders can more confidently apply the 
predictions in their selection programs.
Key words: genetic evaluation, genomic selection, 
mixed models, multitrait

INTRODUCTION

Genetic markers are central to dairy cattle selection 
programs, allowing accurate and affordable prediction 
of each animal’s merit using tens of thousands of geno-
types. Many new issues arise when models use geno-
types along with phenotypes and pedigrees, but many 
previous principles of modeling remain true. Models 
must still separate genetic from environmental effects 
on traits, and genetic effects are now further separated 
and tracked across each chromosome by markers. Since 
2008, rapidly growing genomic data sets and changes in 
selection programs require constant updating of evalu-
ation systems. More available choices and algorithms 
allow researchers to improve accuracy and control bias 
in genetic rankings while adding more data.

Modeling involves defining traits, editing raw data, 
adjusting for environmental effects, including genetic 
by environmental interactions and correlations among 
traits, and accounting for nonadditive inheritance or 
nonnormal distributions. Major previous advances in 
US evaluation models were use of daughters’ average 
production adjusted for dams’ production in 1937, use 
of herd-year-season groups and heritability in 1962, use 
of sire and maternal grandsire pedigrees in 1974, use 
of all relatives in 1989, use of foreign data from multi-
trait, across-country evaluation (MACE) in 1995, and 
use of a multibreed model in 2007. Similar advances in 
modeling occurred in many other countries. The goal of 
modeling is to provide accurate and timely predictions 
of the future performance for each animal (or embryo). 
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Accurate estimates of the environmental effects may 
also be helpful in management decisions and bench-
marking to compare nongenetic factors, but this report 
will focus on genetics.

Goals of this report were to (1) summarize the choices 
of data available for genomic modeling, (2) compare 
methods to test different models for predictive ability, 
and (3) describe how changes in breeding programs and 
available data may require changes in models.

GENETIC MODELING

Data

Genotypes can include SNP, QTL, insertions, dele-
tions, and haplotypes; total numbers of known vari-
ants have increased rapidly since 2000 from hundreds 
to thousands to millions (Table 1). About 30 million 
total variants have been identified in cattle (Daetwyler 
et al., 2014) and could, in theory, be imputed for each 
genotyped animal. Thus, imputation can generate far 
more data than any routine analysis could affordably 
include. Research, therefore, focuses on estimating 
effects of many variants from progeny-tested bulls or 
phenotyped cows and then including the variants with 
larger estimated effects on future chips and in routine 
evaluations (Hayes et al., 2014; Wiggans et al., 2014; 
Brøndum et al., 2015).

The variants included are increasingly chosen from 
previous estimates or bioinformatics instead of addi-
tional random markers. Until 2013, patents prevented 
some variants from being used, but patents on naturally 
occurring variants are no longer valid in the United 
States (US Supreme Court, 2013). As costs of genotyp-
ing by sequencing decline, new variants and mutations 
could be detected with each new animal. Whole-genome 
sequencing can read all DNA at various depths of cov-
erage, and exome sequencing can read just the sections 
of DNA that code for expressed genes (McClure et al., 
2014).

Pedigrees were the basis of selection for many de-
cades. Accuracy was excellent for bulls in AI service 
and for embryo transfer (ET) calves because of careful 
checking but was not so good for commercial cows. Ge-

nomic testing can discover or correct ancestry because 
nearly all AI sires and maternal grandsires are now 
genotyped for dairy cattle in many countries (Tooker 
et al., 2015). Evaluation models have not accounted 
for uncertain paternity and thus have underestimated 
the true genetic differences among such sires (Foulley 
et al., 1987), but paternity is certain when daughters 
are genotyped. Correct pedigrees are useful in imputa-
tion, avoiding inbreeding, and in quality control of the 
genotyping process, such as to avoid switched samples, 
but are no longer as important in modeling because 
pedigree relationships are being replaced by genomic 
relationships.

Phenotypes can be defined in many ways. A main 
goal is consistent definition across time and countries 
so that larger data sets can be used to estimate small 
effects of individual genes. Foreign data can improve re-
liability if traits have high correlations across countries 
(Lund et al., 2011), and this has led to widespread in-
ternational genotype exchanges. Historical phenotypes 
can increase reliability if the recent reference popula-
tion is small (Cooper et al., 2015) but could decrease 
reliability if generations of recombination have changed 
the linkage patterns or allele frequencies or if the traits 
have changed over time (Lourenco et al., 2014). Selec-
tion previously emphasized traits with high heritability, 
but large reference populations now allow progress from 
genomic selection even for traits with low heritability.

Environmental factors such as herd-year-season, age, 
parity, days in milk, and milking frequency were in-
cluded in models or used to preadjust data for many 
decades. Data edits for phenotypes are important but 
are not affected by the addition of genotypes, and so 
previous methods should apply. Edits for genotypes are 
becoming more complex as new chips, new variants, 
and sequence data are added. Each of the 17 chips now 
included has different patterns of missing data and often 
different names for the same variant, requiring complex 
merges and edits (Nicolazzi et al., 2014) because error 
rates can also differ by chip or source of data. Imputa-
tion is now a key step in the US evaluation because 
only 25% of all animal genotypes are measured and 
75% are missing and imputed. Imputation uses statisti-
cal methods and pedigrees to phase observed higher-

Table 1. Growth in number of variants and animals available to estimate genetic effects

Year Variants Reference animals1 Example reference

1991–2004 367 1,415 Ashwell et al., 2004
2007–2010 42,503 16,646 Wiggans et al., 2011
2011–2013 636,967 15,842 VanRaden et al., 2013
2014–future 28,300,000 234 + imputed Daetwyler et al., 2014
1Holstein reference animals in April 2015 included 27,464 progeny-tested bulls and 136,184 phenotyped cows.
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density genotypes into haplotypes (segments of shared 
DNA) and then choose the 2 most likely haplotypes 
inherited by each animal genotyped at lower density.

Numbers of available genotyped animals are also 
increasing rapidly, nearly doubling each year over the 
past 6 yr from a few thousand in 2009 to >1 million 
in 2015 (Figure 1). The database includes genotypes 
from 48 countries, including about 90,000 animals from 
Europe, but most are from North America (Tooker et 
al., 2015). Most are young females and will contribute 
to estimating allele effects in the future, but only about 
200,000 females have US phenotypes so far. Eventu-
ally most heifer calves could be genotyped, and the 
database may contain >10 million genotyped animals 
within a decade or two. Traditional genetic evaluations 
retained phenotypes and pedigrees for >50 yr, and 
genomic evaluation algorithms must be more efficient 
if all historical genotypes are retained and used. Cur-
rently, 4 breeds are evaluated, including 903,120 Hol-
steins, 116,042 Jerseys, 19,457 Brown Swiss, and 4,715 
Ayrshires (including Scandinavian red dairy cattle), 
plus 2,281 Guernseys that could be evaluated in the 
near future. Data storage and processing requirements 
expand by number of animals × variants genotyped, or 
number of animals × depth of coverage (often about 
10) × length of genome (about 3 billion) for sequence 
data.

Models, Parameters, and Computation

Genomic predictions often model marker genotypes 
using multiple linear regressions and a normal distribu-
tion for the marker effects (genomic BLUP; GBLUP) 
but can also use many different prior distributions. 
Theory and results for a wide range of such models 
were reviewed by de los Campos et al. (2013). When 
estimating effects of sequence variants, the prior distri-

bution may also account for predicted functional effects 
of genes using bioinformatics (Hayes et al., 2014). Vari-
ants should always be treated as random rather than 
fixed because even if effects are known to be large for 
some traits, they may be very small for others. Because 
numbers of available variants now far exceed the ability 
to impute and use all in routine evaluations, genomic 
evaluations must now choose and use subsets of the 
known variants. Traditional evaluations generally in-
cluded all data from all animals, subject only to edits 
on data quality, because the inverse of the pedigree 
relationship matrix required little computation (Hen-
derson, 1976).

Multitrait genomic models are preferred for traits 
with many missing records, high correlations among 
traits, or when foreign records are included as pseudo-
observations. Most countries use multitrait traditional 
evaluations (VanRaden et al., 2014), but few use 
multitrait genomic evaluations (Calus and Veerkamp, 
2011; Tsuruta et al., 2011). Similarly, most countries 
use random regression models with additional genetic 
effects (Schaeffer, 2004) in the conventional evaluation, 
but use only 1 genetic effect per trait in the genomic 
model. A main reason is that foreign bulls have only 
1 EBV per trait in MACE. Single-step test-day mod-
els are possible (Koivula et al., 2015), but methods to 
incorporate foreign data may be more difficult than 
those used for single-step lactation models (P ibyl et 
al., 2013).

Unknown-parent groups should be defined differently 
for traits with many decades of records than for traits 
recorded only recently. Young animals without records 
were often excluded from conventional models and then 
their parent averages calculated separately afterward. 
Single-step models may include these recent animals 
because some are genotyped and affect the accuracy 
of their nongenotyped parents, but separate unknown-
parent groups should not be defined for the young 
animals if no phenotypes are available to estimate the 
effects. Misztal et al. (2013) compared several different 
grouping strategies for models including genomic in-
formation and recommended strategies to avoid biases 
when the genotyped animals have incomplete pedigrees.

Nonlinear models have been used to account for the 
nonnormal distribution of genomic effects, but precision 
is better than that of linear models only for traits influ-
enced by major genes. Few routine genomic evaluations 
have attempted to account directly for nonnormality of 
categorical trait phenotypes such as stillbirth, calving 
ease, or longevity, because multistep genomic models 
have used deregressed breeding values. Nonparametric 
models and machine learning algorithms can be used 
for categorical traits (González-Recio and Forni, 2011), 
but the predictions may then be more difficult to 

Figure 1. Cumulative numbers of genotyped males and females by 
year. Color version available online.
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explain. Single-step models could, in theory, account 
for nonnormality of phenotypes, but most are animal 
models whereas categorical or survival models are often 
sire models.

Genomic preselection may bias estimates of envi-
ronmental effects, genetic trend, and individual EBV 
from the conventional animal models used in multi-
step methods (Patry and Ducrocq, 2011). Mendelian 
sampling of phenotyped progeny and herdmates is 
no longer expected to average zero, and conventional 
models do not adjust for genomic merit of mates. 
Single-step models that combine pedigree and genomic 
relationships (single-step GBLUP; Aguilar et al., 2010) 
can account for the preselection (Vitezica et al., 2011). 
Approximate formulas must be used in computing 
inverses when numbers of genotyped animals exceed 
100,000 (Misztal et al., 2014), but such approximations 
may cause little or no loss of reliability (Fragomeni et 
al., 2015). Modified single-step GBLUP equations can 
use deregressed conventional breeding values instead of 
raw phenotypes to retain features of previous software 
more easily (Mäntysaari et al., 2011; Winkelman et al., 
2015), or genomic pseudo-observations can be added 
as a correlated trait (Stoop et al., 2013), but those ap-
proaches may not account for selection as well.

Potential biases in US evaluations due to preferential 
treatment or genomic selection of females were esti-
mated by comparing percentages of embryo transfer 
daughters, percentages of genotyped daughters, and 
merit of mates for bulls born 2010 and later that had 
sired >10 US daughters. The top 50 young genotyped 
Holstein bulls ranked on December 2014 net merit 
(NM$) were compared. Future biases can be forecast 
for such bulls because genomic preselection of mates 
has already occurred and can be accurately measured 
when calves are born, even if those heifers do not have 
phenotypes yet. Potential bias from genomic preselec-
tion of a bull’s mates was calculated as the average 
difference of genomic EBV (GEBV) – EBV from De-
cember 2014 data for the genotyped mates, multiplied 
by fraction of mates genotyped. Comparing preselected 
bulls primarily to each other can also bias estimates 
of genetic trend (Patry and Ducrocq, 2011), but such 
biases were not examined in this study.

Nonadditive genetic effects such as inbreeding de-
pression and heterosis (VanRaden et al., 2014) or domi-
nance (Sun et al., 2013) can improve accuracy com-
pared with additive-only models. Traditional animal 
models may include all breeds and crossbreds, but most 
genomic evaluations are still computed within breed. 
As more animals are genotyped, inbreeding depression 
and heterosis adjustments could use genomic instead 
of pedigree estimates. Scaling genomic relationships 

to match pedigree relationships is more difficult with 
multiple breeds. Winkelman et al. (2015) reported a 
lack of convergence using genomic relationships among 
multiple breeds, but found that equations using a Eu-
clidean distance matrix did converge. A better strategy 
may be to model marker effects as correlated instead of 
the same for different breeds, with additional math to 
account for crossbreds (Makgahlela et al., 2013).

Mating programs using genomic rather than pedigree 
relationships can be very profitable (Sun et al., 2013), 
and dominance effects can be included with little extra 
computation but also perhaps little extra gain if domi-
nance variance is small. Culling guides can also be a 
valuable product of the evaluation, using accumulated 
data for an individual to predict its own future phe-
notypes rather than the next generation (Kelleher et 
al., 2015). Currently few multistep evaluations include 
genomic information in predicted producing ability, but 
single-step evaluations could do this automatically.

Genotype-by-environment interactions can be mod-
eled using discrete classifications such as sire by country 
or sire by herd or as random regressions on factors such 
as heat stress, herd level, or feeding system (pasture 
vs. intensive). Interactions may be important for some 
traits but were not accurately estimated from 100 prog-
eny-test daughters because interaction variance is often 
much smaller than additive genetic variance (Zwald et 
al., 2003). However, genomic estimates of genotype-
by-environment interaction might be fairly accurate 
even for young calves if large reference populations are 
available and sufficient animals that share genotypes 
have phenotypes measured across environments. Large 
reference populations allow predicting more terms in 
the model and more traits because genomic relation-
ships measure actual proportions of alleles shared and 
thus capture information more efficiently than pedigree 
relationships, which measure only expected averages of 
alleles shared. The upper limit on reliability for predict-
ing merit of calves is 50% with pedigree but is nearly 
100% with genomic models.

The rapid processing needed for weekly genomic pre-
dictions may limit the complexity of models or require 
approximations. Although DNA samples can be ob-
tained at birth and breeding decisions can wait until 1 
yr of age, marketing and transfer of ownership happens 
quickly for top animals. Also, many herd owners now 
also use genomics as a culling tool, selling calves with 
low genomic predictions early in life instead of raising 
them for replacements (Weigel et al., 2012). High labor 
costs for calves during their first month created a de-
mand for weekly evaluations, and these are computed 
only for animals with new genotypes (Wiggans et al., 
2015). All genotypes are reprocessed each month, and 
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phenotypes are updated every 4 mo together with inter-
national phenotypes provided by MACE.

Prediction accuracy in dairy cattle is usually tested 
by predicting the latest 4 yr of progeny-tested bulls 
from data with the last 4 yr truncated (Mäntysaari 
et al., 2010). Often, this same test is used to choose 
models and adjust parameters to improve prediction 
accuracy and minimize biases. For example, ratios of 
polygenic to marker variance can be set using valida-
tion results instead of variance estimation (Liu et al., 
2011). Two other common validation methods are using 
current evaluations with truncation of only recent bulls 
rather than recent data, or using cross-validation with 
random subsets of data rather than time truncation, 
but both methods tend to give inflated predictions of 
future success.

Standard validation tests the ability of genomic equa-
tions to predict 1 generation ahead, but many calves 
(or embryos) are now 2 or 3 generations away from the 
progeny-tested bulls used to compute the predictions. 
Also, only those bulls with the highest predicted merit 
now obtain daughters. This can greatly reduce the vari-
ance of true genetic merit and the correlations of pre-
dicted with true merit needed to estimate the reliability 
of the prediction system. Adjustments to account for 
this reduced variance are needed to accurately compute 
observed reliabilities.

PRACTICAL IMPLICATIONS

Growth of Modeling

Rapid growth of genomic databases can quickly 
cause previously tested statistical methods to become 
outdated. Computer programs also must be constantly 
revised to keep up with database sizes that include 
more genotyped animals and differing numbers of geno-
typed variants per animal. Conventional animal models 
adjust each animal’s EBV for merit of parents, progeny, 
mates, and herdmates, whereas single-step GBLUP 
more precisely adjusts for their GEBV instead of EBV, 
thereby avoiding genomic preselection biases that can 
cause average GEBV to differ from EBV. No models 
may fully account for lack of random sampling, ET, 
and extreme prices that may cause preferential treat-
ment. In the past, use of highly selected foreign bulls 
sometimes caused similar biases but with little effect on 
bulls tested in domestic programs.

Random-sample progeny testing previously ensured 
that every bull’s first-crop daughters were part of a 
well-designed experiment to estimate genetic merit. 
Now, many of the best young bulls are used for elite 
matings and marketed individually instead of as a 

group. Their first-crop evaluations are more similar 
to the second-crop evaluations of traditional selection. 
High percentages of the daughters of some bulls are 
from ET or from genotyped mates (Figure 2), whereas 
most others have low percentages. However, differences 
are very small between average GEBV and EBV for 
mates of the young bulls in Figure 2, with maximum 
potential biases in the bulls’ published evaluations of 
only $11 net merit, 1 kg of protein, 0.1 mo of pro-
ductive life, and 0.1% daughter pregnancy rate due to 
mates’ merit.

Adjustments for percentage of ET daughters have 
been implemented in Canada to account for prefer-
ential treatment (Beavers and Van Doormaal, 2014), 
but initial results from US yield traits indicate little 
current bias. Evaluations were stable across time for 
recent bulls that had a high percentage of ET for early 
daughters that then transitioned to lower percentage 
of ET daughters, with as many bulls increasing or de-
creasing when percentage of ET daughters decreased. 
However, other potential biases could emerge in the 
future as breeding programs continue to change. For 
example, use of the top genotyped heifers as embryo 
donors instead of for milk production could cause a 
negative bias in their sire’s evaluation.

Computation using many conventional models is af-
fordable with very large data sets because the pedigree 
relationship inverse is sparse. Genomic computation 
with multistep models is also affordable using iteration 
for marker effects, even with large reference popula-
tions. Completing a full evaluation currently takes 
about 5 d using <30 processors (Table 2). Single-step 

Figure 2. Percentages of mates with genotypes (�) or offspring 
from embryo transfer (×) for top young bulls based on December 2014 
net merit.
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models were limited by the need to invert the genomic 
relationship matrix, but approximate methods to in-
clude that inverse should make single-step GBLUP 
affordable with many more genotyped animals (Misztal 
et al., 2014). Bayesian models that used Monte Carlo 
methods often required much more computation than 
GBLUP, but nonlinear iterative algorithms have given 
much of the same benefit in official US evaluations 
with very little extra computation (VanRaden, 2008). 
Global analysis of raw data is still not practical, and 
so national GEBV for young Holstein bulls from 11 
populations are combined in a meta-analysis known 
as genomic MACE (GMACE; Sullivan et al., 2011), 
analogous to MACE (Schaeffer, 1994), that combines 
rankings across countries for bulls with daughter re-
cords. A preferred alternative to GMACE is to compare 
foreign and domestic young bulls directly on the same 
scale by exchanging genotypes.

Predictive Ability

Validation results can become outdated because of 
rapid growth of genomic databases and changes in se-
lection programs and, therefore, are rechecked at least 
every 2 yr by Interbull (Uppsala, Sweden) member 
countries. For example, when genomic data sets were 
smaller, addition of genotypes from all bulls including 
very old bulls increased reliability. More recent research 
found that the oldest bulls could be dropped with little 
loss of accuracy because genotypes for many more re-
cent bulls are available that contain the same DNA. 
In fact, for the more heritable traits, dropping all of 
the 27,229 progeny-tested bull genotypes causes little 
loss because the reference population now also includes 
>150,000 genotyped cows with records (Cooper et al., 
2015). Early tests showed that adding highly selected 
females did not improve accuracy except with special 
adjustments to reduce bias (Wiggans et al., 2010), but 
most females now are genotyped as heifers before their 
phenotypes arrive, reducing preferential treatment bias.

The success of genomics has reduced our ability to 
test how well it works. The standard test predicts in-
dependent data such as daughter yield deviations or 
deregressed proofs from nongenomic models. If those 
statistics contain biases from preselection, regressions 
of later on earlier GEBV will be a less independent but 
sensible alternative test of success. An advantage of 
tests using only GEBV is that these use public informa-
tion more easily understood by breeders.

Reliabilities of genomic predictions for young animal 
have steadily improved since their introduction in 2009. 
For most major Holstein populations, reliabilities now 
average 65 to 75% for more heritable traits and 45 to 
65% for traits with lower heritability, and correspond 
fairly closely to a nonlinear function of the sum of reli-
abilities of reference bull EBV (Sullivan and Jakobsen, 
2014). Reliabilities of other breeds such as Brown Swiss 
and Jersey are lower but have also improved with 
international exchanges. For all breeds, inclusion of 
more cows in the reference should continue this upward 
trend. Genomic modeling may be more difficult when 
many individuals each contribute only a little informa-
tion, but many phenotypes are needed to accurately 
estimate effects from many genes.

CONCLUSIONS

Modeling is a key step in animal breeding because the 
model determines how the mixed model equations will 
convert the genomic, phenotypic, and pedigree files into 
predictions. Algorithms and computer resources are 
becoming limiting factors as numbers of animals and 
markers genotyped both expand rapidly. Results from 
validation tests are very helpful in choosing models and 
setting parameters. The best models use all data to 
predict future animal performance with the smallest 
errors and biases. As models become more complex, 
researchers must be able to explain how the models 
work so that breeders can more confidently apply the 
predictions in their selection programs. Breeders may 

Table 2. Current computation required for multistep reprocessing of all data every 4 mo and weekly updates 
for newly genotyped animals

Step Time (h) Processors Memory (Gb)

Extract data and pedigree 10 7 1
Calculate inbreeding and heterosis 8 2 5
Compute conventional EBV for 12 traits 24 12 40
Impute genotypes (using prior haplotypes) 48 20 75
Compute genomic EBV (GEBV) for 27 traits 10 27 54
Compare genomic and pedigree relationships 6 20 75
Distribute final results 5 1 1
Total time for full evaluations 111    
Compute weekly GEBV for new animals 1.4 10 50
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need additional supporting information and education 
to understand how well the theoretical methods work 
in practice.
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