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ABSTRACT

In the early 1900s, breed society herdbooks had been 
established and milk-recording programs were in their 
infancy. Farmers wanted to improve the productivity of 
their cattle, but the foundations of population genet-
ics, quantitative genetics, and animal breeding had not 
been laid. Early animal breeders struggled to identify 
genetically superior families using performance records 
that were influenced by local environmental conditions 
and herd-specific management practices. Daughter–
dam comparisons were used for more than 30 yr and, 
although genetic progress was minimal, the attention 
given to performance recording, genetic theory, and 
statistical methods paid off in future years. Contem-
porary (herdmate) comparison methods allowed more 
accurate accounting for environmental factors and ge-
netic progress began to accelerate when these methods 
were coupled with artificial insemination and progeny 
testing. Advances in computing facilitated the imple-
mentation of mixed linear models that used pedigree 
and performance data optimally and enabled accurate 
selection decisions. Sequencing of the bovine genome 
led to a revolution in dairy cattle breeding, and the 
pace of scientific discovery and genetic progress accel-
erated rapidly. Pedigree-based models have given way 
to whole-genome prediction, and Bayesian regression 
models and machine learning algorithms have joined 
mixed linear models in the toolbox of modern animal 
breeders. Future developments will likely include elu-
cidation of the mechanisms of genetic inheritance and 
epigenetic modification in key biological pathways, 
and genomic data will be used with data from on-farm 
sensors to facilitate precision management on modern 
dairy farms.

Key words: genetic selection, dairy cattle, genomic 
selection, statistical models

THE BUILDING BLOCKS

Performance Recording

Pedigree records and performance data were the key 
building blocks in developing effective genetic selection 
programs in the pre-genomic era, as noted in Appendix 
Table A1. Pedigree records traced back to the origin of 
breed societies in the late 1800s, and widespread collec-
tion of performance data began shortly thereafter, with 
the encouragement of early dairy industry pioneers 
such as W. D. Hoard. The first statewide association 
for recording milk weights and analyzing butterfat 
samples was formed in Michigan in 1905, and by 1908, 
the United States Department of Agriculture (USDA) 
Bureau of Animal Industry began organizing local and 
state cow testing associations into the national Dairy 
Herd Improvement Association (DHIA). Responsibil-
ity for this effort was transferred to federal extension 
workers in 1914, and participation in milk testing grew 
rapidly (VanRaden and Miller, 2008), as shown in Fig-
ure 1.

Monthly DHIA testing was the norm for many de-
cades, but now about two-thirds of dairy farms use 
labor-efficient a.m./p.m. testing plans, in which milk 
samples are taken at alternate times each month. Future 
strategies that focus on more frequent DHIA sampling 
of recently fresh cows or cows in the highest-producing 
pens may provide more useful data for cows that are 
at peak efficiency and at the greatest risk for common 
health disorders. Electronic measurement of data, via 
radiofrequency identification (RFID) sensors and inline 
sampling systems, has replaced manual entry of pedi-
gree and performance data, as shown in Figure 2.

Local bull associations were common during the 1920s 
and 1930s, until the widespread adoption of AI in the 
1940s, when dozens of regional AI cooperatives were 
formed. Because virtually all traits of interest in dairy 
cattle are sex-limited, genetic evaluation of a bull’s own 
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Figure 1. Participation in milk recording programs in the United States, from 1908 to 2017.

Figure 2. Recording of performance data for dairy cows then (1936, left panels) and now (2017, right panel).



10236 WEIGEL ET AL.

Journal of Dairy Science Vol. 100 No. 12, 2017

phenotypes is not useful, and strategies for estimating 
a bull’s genetic superiority or inferiority based on the 
performance of his offspring were needed.

Pedigree Data

Despite the fact that dairy cattle breed societies as-
signed unique identification numbers to individual cows 
and bulls as early as the late 1800s, a large proportion 
of nonregistered animals (“grades”) were not included 
in breed society herdbooks. An alternative identifica-
tion method was needed, and USDA introduced metal 
ear tags with unique numbers in 1936. These evolved 
into the 9-digit tag series (e.g., 35ABC1234) introduced 
by the Animal and Plant Health Inspection Service 
(APHIS) and National Association of Animal Breed-
ers (NAAB) in 1955, which are still used for many 
cows today. The American ID series, introduced in 
1998, features a 2-character breed code, 3-character 
country code, and 12-digit identification number (e.g., 
HOUSA00035ABC1234 or HO840012345678910). This 
system was designed to be unique worldwide and to in-
clude both registered and grade animals, and it allows 
multiple identification codes for individual animals to 
be cross-referenced to a single unique number.

EARLY METHODS TO PREDICT BREEDING VALUES

Daughter–Dam Comparison

The lactation performance of a cow was long thought 
to be influenced by heredity, and early selection deci-
sions were based simply on an individual cow’s pheno-
type for milk or butter yield. The idea of comparing a 
cow’s milk production with that of her dam emerged 
near the turn of the 20th century. Several indices were 
proposed for this purpose (Davidson, 1925; Graves, 
1925; Yapp, 1925; Goodale, 1927; Gowen, 1930; Bon-
nier, 1936; Allen, 1944) and their relative accuracy was 
compared by Edwards (1932). In practice, the earliest 
known daughter–dam differences in the United States 
were computed by individual bull associations around 
1915, based on a handful of sires with a few offspring 
apiece—this was the first serious attempt to improve 
dairy cattle by selection. By 1927, approximately 250 
cooperative dairy bull associations, representing more 
than 6,000 farmers, provided data to the USDA and, 
for the next 4 decades, the USDA computed daugh-
ter–dam comparisons for dairy bulls and mailed the 
results to their owners. Artificial insemination became 
available in the late 1930s, and with it, the opportunity 
for superior bulls to produce hundreds or thousands 
of offspring in many herds. Large groups of daughters 
performing under a variety of management and envi-

ronmental conditions greatly enhanced the accuracy 
of genetic predictions. During this period, the work of 
giants such as R. A. Fisher (1918, 1930) and J. B. S. 
Haldane (1932) laid the foundations of population and 
quantitative genetics, which allowed pioneers such as 
Sewall Wright (1932) and Jay Lush (1931, 1933) to 
develop the science of animal breeding and the sta-
tistical methodologies needed for accurate evaluation 
of dairy sires. Various indices based on daughter–dam 
comparisons were developed, including those of Wright 
(1932) and Lush et al. (1941).

Daughter–dam comparisons facilitated genetic evalu-
ation of bulls that were used in multiple herds, as long 
as performance data were available for the dam and 
her daughters. This method accounted for herd-specific 
management practices and local environmental condi-
tions if the dam and daughter were housed in the same 
herd. Changes in management or environmental con-
ditions that occurred in the time between dam’s and 
daughter’s performance were ignored. Relationships 
between sires and their mates were not considered, and 
this assumption was sometimes violated if the bull was 
used in his herd of origin. Variation in the phenotypic 
performance of the dam, relative to her actual genetic 
merit, was a huge source of error in the resulting pre-
dictions. Genetic trends over time were ignored, but ge-
netic progress was negligible in most herds at the time. 
An important limitation was that sire evaluations were 
not regressed to the mean, so bulls evaluated based on 
only a few daughter–dam pairs were more likely to have 
extremely high or low genetic predictions. During this 
period, methods were developed to standardize records 
for lactation length (305 d), milking frequency (2×), 
and age at calving (mature equivalent). Adjustments 
for season of calving were also developed, but differ-
ences in environmental conditions between years were 
generally ignored.

Selection Index

Hazel and Lush (1942) introduced the selection 
index for EBV for individual traits, and this method 
was used by Lush (1944) to derive weights for various 
sources of information in daughter–dam comparisons. 
The EBV of a selection candidate was predicted using 
multiple linear regression, where each independent vari-
able represented individual or mean performance for a 
specific type of relative, such as dam, sire, maternal 
half-siblings, paternal half-siblings, or progeny. The 
regression coefficients represented index weights, which 
were a function of genetic relationships and the amount 
of information contributed by the phenotypic record or 
average (e.g., number of lactations or number of off-
spring). The amount of information from various types 



Journal of Dairy Science Vol. 100 No. 12, 2017

100-YEAR REVIEW: METHODS AND IMPACT OF GENETIC SELECTION 10237

of relatives often differed between selection candidates, 
so index weights were adjusted for the number of rela-
tives or lactations contributing to mean performance, 
based on heritability and repeatability parameters.

Contemporary (Herdmate) Comparisons

Contemporary comparisons represented a huge leap 
in the accuracy of genetic evaluations because of their 
ability to account for the specific management and en-
vironmental conditions under which phenotypes were 
expressed (Robertson et al., 1956). Robertson and 
Rendel (1954) are credited with introducing contempo-
rary comparisons, and Henderson et al. (1954) formally 
published the herdmate comparison model in the same 
year. However, Searle (1964) noted that this method 
had been used in New Zealand before either publication. 
The concept of contemporaries or herdmates exposed 
to similar management and environmental conditions is 
much like that of an epidemiological “cohort,” in which 
patients are grouped based on commonalities in demo-
graphic features (e.g., age, sex, or geographical region) 
and lifestyle characteristics (e.g., exercise regimen or 
tobacco usage). A critical consideration in designing 
contemporary groups is the balance between a precise 
definition of the cow’s environmental conditions and 
the need for enough herdmates to provide an accurate 
estimate of the contemporary group effect.

Progeny testing became widespread during the era of 
daughter–dam comparisons. However, the introduction 
of contemporary comparisons allowed AI centers to 
fully capture the benefits of distributing the semen of 
young bulls to dozens or hundreds of herds with differ-
ent geographical locations, environmental conditions, 
and management practices. Contemporary comparisons 
were enhanced by regressing average daughter contem-
porary deviations (now known as daughter yield devia-
tions) toward zero, based on heritability and number 
of progeny, because mean deviations for bulls with few 
offspring have larger variance than mean deviations for 
bulls with many offspring. Some contemporary com-
parison models also included a herd by sire interaction 
adjustment to limit the effect of a single herd on a sire’s 
EBV.

Cornell University implemented a regional sire evalu-
ation system based on contemporary comparisons in 
the mid-1950s (Henderson, 1956), in which records 
were weighted based on the number of lactations per 
cow and a repeatability parameter. However, informa-
tion about the number of daughters or contemporaries 
was not used when combining daughter contemporary 
deviations to compute the sire’s EBV. The contempo-
rary comparison method was applied by the USDA in 
1961, replacing the daughter–dam comparison system. 

This model allowed the inclusion of cows for which 
performance records of the dam were unknown. Herd-
year-season contemporary groups were based on a 5-mo 
moving average, and herdmate averages were adjusted 
for seasonal effects. As in the Cornell model, sire effects 
were regressed to the mean, so a bull could not rank 
highly unless he had a significant number of daughters. 
Records of cows that were culled or sold for dairy pur-
poses were extended to 305 d, whereas longer records 
were truncated at 305 d.

Other adjustments were implemented at this time, 
including factors for extending short lactations to 305 
d that were specific to breed, region, season, and parity, 
and records were weighted by length of lactation. A 
time lag between the cow’s calving date and initiation 
of the sire summary ensured that records from culled 
cows with short lactations did not bias the genetic 
evaluations of their sires. This was an obvious limita-
tion as regards timeliness of data entering the genetic 
evaluation system, at least until 1975, when records 
in progress became available for all cows in the herd. 
Estimates of sires’ genetic merit were published as 
the predicted difference (PD) in performance of their 
daughters relative to contemporaries in a typical herd. 
The term “repeatability” (later “reliability”) was used 
to denote the accuracy of a bull’s PD, and it indicated 
the level of confidence a farmer should have when pur-
chasing the bull’s semen. This method, which was used 
until 1973, allowed the inclusion of more data, tended 
to be less biased, and provided a cow index for ranking 
elite females.

Several competing methods for sire evaluation were 
introduced during this period. Most were closely re-
lated to each other and to the weighted least-squares 
approaches of C. R. Henderson (1952, 1963) and Cun-
ningham (1965), as well as simplified versions of the 
best linear unbiased prediction (BLUP) models de-
scribed in subsequent sections (Thompson, 1976). The 
cumulative difference method of Bar-Anan and Sacks 
(1974) is essentially equivalent to the contemporary 
comparison method but with an adjustment for the 
genetic level of sires of the cow’s contemporaries. The 
term “cumulative” recognized that performance data of 
a bull’s daughters accumulate over time, resulting in 
increased accuracy of predictions, and this method was 
the basis of the modified cumulative difference method 
proposed by Dempfle (1976).

Genetic evaluations of dairy sires were unified at 
USDA in 1968 (Plowman and McDaniel, 1968), when 
dairy cattle breed associations discontinued their own 
sire rankings for production traits. In 1972, the USDA 
Division of Dairy Herd Improvement Investigations 
was renamed as the USDA-ARS Animal Improvement 
Programs Laboratory (AIPL)—this laboratory set the 
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global standard for translational research on genetic 
evaluation of dairy cattle for the next 45 years.

Modified Contemporary Comparison

In 1974, the modified contemporary comparison 
(MCC) method was introduced (Dickinson et al., 1976; 
Norman et al., 1976). In this model, a bull’s PD repre-
sented a weighted average of his pedigree value and the 
deviation in performance of his daughters from their 
contemporaries. In previous methods, a bull’s pedigree 
information was generally discarded when data from 
milking daughters became available. The MCC method 
also allowed the inclusion of sire and maternal grandsire 
pedigrees. The genetic merit of competing sires within a 
given herd (i.e., sires of contemporaries) was taken into 
account, and this approach could better accommodate 
genetic trends over time (Norman et al., 1972). These 
features of the MCC method were increasingly impor-
tant, because modern selection tools and advanced 
reproductive technologies now allowed some farmers 
to make more rapid genetic progress than their peers 
(McDaniel et al., 1974). In addition, positive assorta-
tive mating had become popular, as farmers “mated 
the best to the best” to improve their herds (Norman 
et al., 1987). The first 5 lactation records from a given 
cow were included in the MCC model, which provided 
a more accurate picture of an animal’s genetic superior-
ity or inferiority in lifetime productivity. Contemporary 
groups differed for primiparous and multiparous cows 
within a herd. As previously, a bull’s evaluation was 
regressed based on heritability, number of daughters, 
and lactations per daughter, but regression was toward 
his pedigree value, rather than the population mean.

The MCC method produced results that were nearly 
identical to those of BLUP in a sire model, but with 
substantially lower computing requirements. The prac-
tice of resetting the genetic base was initiated during 
this time, so farmers would be reminded to raise their 
sire selection standards as the breed made genetic prog-
ress. However, periodic resetting of the genetic base 
“forgives” undesirable genetic trends that may occur as 
correlated responses to selection (e.g., female fertility) 
or biases in the perceived value of certain traits (e.g., 
stature). The MCC method was widely accepted by 
pedigree breeders and AI studs, and it led to impressive 
annual genetic gains of about 45 kg of milk per cow per 
lactation. Another innovation during this period was the 
incorporation of pricing data for milk, fat, and protein, 
so that estimates of genetic merit could be expressed 
as the financial gain or loss relative to an average sire 
of the same breed (PD$). Cow indices became widely 
used during the MCC era; these represented a weighted 
average of the cow’s modified contemporary deviation 

and her sire’s PD (and later her dam’s cow index), 
with weights depending on the amount of information 
contributing to each component.

LINEAR MODELS

Mixed Linear Models

Henderson (1953) advocated the use of statistical 
models to partition genetic and environmental variance 
components and predict the genetic merit of dairy sires, 
and this led to the development of BLUP methodology. 
Despite its theoretical appeal, computing limitations 
prevented implementation of BLUP until 1972, when 
Cornell University implemented BLUP in a sire model; 
this model was later modified to include genetic rela-
tionships among sires.

A mixed linear model is expressed most succinctly in 
matrix notation as

	 y = Xb + Zu + e,	

where y is a vector of phenotypic measurements on a 
group of animals; b is a vector of continuous or categor-
ical fixed effects that are known to influence the pheno-
type, such as age at calving or herd-year-season con-
temporary group, as one would encounter in a tradi-
tional least-squares analysis; u is a vector of random 
effects, such as sire breeding values; X and Z are inci-
dence matrices that map the phenotypic observations 
in y to the fixed and random effects in b and u, respec-
tively, and e is a vector of random residual effects, such 
as temporary environmental conditions or measurement 
error. The variance components σu

2 and σe
2, correspond-

ing to the random effects u and e, can be estimated 
using a variety of methods, such as maximum likeli-
hood (Harville, 1977).

Sire and Maternal Grandsire Models

If the vector u in the mixed model equations com-
prises the breeding values of dairy sires and y contains 
the lactation records of their daughters, the aforemen-
tioned mixed linear model would be considered as a 
“sire model.” If we specify that G I= ( )N u0 2, ,σ  this 

model assumes that sires are unrelated to each other, 
and the resulting sire EBV are regressed toward the 
population mean in proportion to the magnitude of σu

2 
relative to σe

2. The assumption that sires are unrelated 
to each other is highly unrealistic, given the widespread 
use of AI and embryo transfer, which lead to large 
families of paternal half-siblings and small families of 
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full-siblings, respectively. The concept of modeling cor-
relations between the elements of u when specifying G 
is straightforward, and in this application pedigree in-
formation was used to derive a matrix of expected ad-
ditive genetic relationships, where G A= ( )N u0 2, .σ  The 

resulting A matrix is very large, of the order of the 
number of elements of u, and it could not be inverted 
with computational resources available at the time. 
Henderson (1976) developed a set of rules for construct-
ing A−1 directly, without building A. This allowed 
more precise modeling of relationships among sires 
than the MCC model, as well as relationships between 
sires and cows or relationships between sires and mater-
nal grandsires (Henderson, 1975). Later, this method 
was extended to allow efficient construction of A−1 in 
the presence of inbreeding (Tier, 1990).

In the sire model implemented for the Northeast AI 
Sire Comparison at Cornell University in 1972, the vec-
tor b included the fixed effects of herd-year-season of 
calving and genetic group of the sire, where the latter 
was based on birth year of the bull and the AI orga-
nization from which he came. The idea was that all 
young bulls purchased by a given AI center in a given 
year were of similar genetic merit, which facilitated the 
assumption that the sires in u represented indepen-
dent (unrelated) samples from the same distribution. 
Only first-lactation records of AI daughters were used, 
although this restriction was later relaxed if the ad-
ditional records were from the same herd (Ufford et al., 
1979). Random mating between sires and dams was as-
sumed, and maternal relationships between cows were 
ignored.

To address the naïve assumption that sires were ran-
domly mated to dams, Quaas et al. (1979) proposed 
a maternal grandsire model. This model included an 
additional random effect, which represented the addi-
tive genetic merit of the maternal grandsire, as well as 
an additional fixed effect, which represented the genetic 
group of the maternal grandsire. Although this was a 
positive step in addressing assortative mating, it still 
assumed that each mate of a given bull represented 
a random sample of all daughters of that maternal 
grandsire. Maternal relationships between dams were 
ignored and the model did not add value in cases where 
the maternal grandsire was unknown. A comprehensive 
examination of assortative mating for milk yield by 
Norman et al. (1987) showed that herds with higher 
average genetic level consistently used genetically su-
perior bulls. However, the primary concern was bias 
due to within-herd assortative mating, which was not 
common at the time (Norman et al., 1987), and few 
AI bulls were affected negatively in the national sire 
evaluation system.

Animal Model

The inability of sire or maternal grandsire models 
to fully account for nonrandom mating of sires with 
expensive semen to cows and heifers with highest per-
ceived value within a given herd was well known. In 
addition, farmers who wished to market superior breed-
ing stock were no longer content with a genetic evalu-
ation system that focused on sires and treated cows as 
a by-product. In 1989, AIPL scientists introduced the 
“animal model” (Wiggans and VanRaden, 1989), which 
used all known relationships between cows and their 
maternal and paternal ancestors. In this model, the 
additive genetic effects of animals represent an infinite 
number of alleles with very small effects—the so-called 
infinitesimal model of inheritance.

Once implemented, by using an iteration on data al-
gorithm and the supercomputer at Cornell University, 
the animal model became the global standard for ge-
netic evaluation of dairy cattle. The statistical method-
ology, which had been derived almost 3 decades earlier, 
allowed precise accounting of the genetic merit of mates 
and provided a consistent framework for simultaneous 
evaluation of male and females. The breeding value of 
an individual animal is represented as the sum of one-
half of the additive genetic merit of its sire, one-half of 
the additive genetic merit of its dam, and a Mendelian 
sampling term that represents its deviation from the 
average additive genetic merit of its full-siblings due to 
random sampling of alleles represented in the gametes. 
All known relationships are considered in the A matrix, 
so the performance of one animal contributes to the 
EBV of all known paternal and maternal relatives, with 
degree of the contribution depending on proximity of 
the relationship. Users typically provide at least 4 or 5 
generations of pedigree data, and pedigrees are rarely 
traced beyond the 1970s, when herdbook records were 
computerized. When pedigree data are missing, un-
known (phantom) parent groups (Westell et al., 1988) 
can be used to account for differences in the genetic 
merit of missing ancestors.

In the USDA animal model, management groups 
were defined according to parity (first vs. later), regis-
try status (registered vs. grade), and 2-mo time blocks 
within herd-year. As in previous systems, adjustments 
were used to account for age, milking frequency, and 
length of lactation, and these factors were specific to 
breed and geographical region. Records in progress 
have been used in the United States since 1975; this 
increased genetic progress by up to 10% by reducing 
the time lag between data collection and breeding value 
prediction (Powell et al., 1975). Incomplete lactation 
records were projected to a 305-d basis once the cow 
had completed 2 or 3 monthly DHI tests, to produce 
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timely genetic predictions and enable rapid selection 
decisions for cows and their sires. Data collection rat-
ings (DCR) were introduced by USDA in 1998; these 
are based on the number and spacing of test-day milk 
records relative to standard monthly supervised record-
ing of all milkings per day, which receives a score of 
100. The DCR system allows weighting of records ac-
cording to their expected value in genetic evaluations, 
and they can be used as a guide to reimburse farmers 
who provide high quality data.

The accuracy of EBV produced by an animal model 
can be calculated from the elements of the inverse of 
the mixed model coefficient matrix, but this is compu-
tationally infeasible, so approximations are used (Har-
ris and Johnson, 1998). A practical approach is to sum 
the number of daughter equivalents that contribute to 
the genetic prediction of a given animal (VanRaden 
and Wiggans, 1991), where the quantities of informa-
tion from the animal’s descendants, own phenotypic 
records, and ancestors (noting that siblings and cousins 
contribute through the animal’s parents) are counted 
when computing reliability values.

Test-Day Model

In 1993, Cornell University was granted a US patent 
for the “test-day model,” in which the performance of 
an animal relative to its herdmates was evaluated us-
ing daily milk weights from the herd’s monthly test, 
rather than standardized 305-d lactation yields. This 
model was introduced for routine genetic evaluations 
in several countries (e.g., Canada, Germany) in which 
the genetic evaluation center obtained a license or suc-
cessfully challenged the patent. However, because of 
this patent, a test-day model was not implemented for 
routine genetic evaluations in the United States. The 
Cornell patent was controversial because many organi-
zations (including USDA) had been providing informa-
tion for decades about the performance of an individual 
cow relative to her herdmates on a given test date, and 
Australia had formally implemented a test-day genetic 
evaluation model in 1984. However, no one had previ-
ously considered patenting this relatively well known 
statistical process (Rothschild and Newman, 2002). An 
interesting feature of test-day models is their ability to 
produce genetic evaluations for lactation persistency; 
for example, the ratio of expected milk yield at 280 d 
versus 60 d postpartum. Animals with greater lacta-
tion persistency may be more likely to remain healthy 
throughout the lactation and might be able to meet 
their nutritional needs with a less expensive ration 
because they do not experience the extremes of DMI 
or negative energy balance of their less-persistent con-
temporaries.

Random Regression Models  
and Covariance Functions

Data that are collected over time, such as test-day 
milk weights of lactating cows or periodic body weights 
of growing heifers, are often analyzed using a random 
regression model (Henderson, 1982; Ali and Schaeffer, 
1987; Jamrozik et al., 1997). Functions such as Leg-
endre polynomials or splines can be used to describe 
the trajectory of genetic, permanent environment, and 
temporary environment effects during the lactation. 
Numerous linear and nonlinear functions have been 
proposed for modeling these effects. For example, the 
Ali and Schaeffer (1987) model included a random herd-
test date contemporary group effect, as well as fixed 
(overall mean) and random (additive and permanent 
environmental) regression coefficients corresponding to 
4 functions of the time during lactation when the cow’s 
milk weight was recorded. In that study, the residual 
variance was assumed fixed throughout the lactation 
but, in general, random regression models can provide 
estimates of the genetic, permanent environmental, 
and residual variances (as well as heritability and 
repeatability) at any time point during the lactation. 
The EBV of selection candidates can be computed at 
various time points during the lactation, and random 
regression models offer greater flexibility in accom-
modating variation in the frequency of milk recording 
between farms.

A similar approach, known as covariance functions 
(Kirkpatrick et al., 1990), can be used to analyze 
longitudinal data and explain the interrelationships 
between genetic and environmental factors over time. 
These models can be computationally demanding, and 
one must ensure that trajectories of additive genetic, 
permanent environment, and temporary environment 
effects are modeled appropriately. The goal of model-
ing the trajectory of genetic, permanent environment, 
and temporary environment effects precisely using a 
complicated function with 4 or 5 parameters must be 
balanced with the reality that parameter estimates will 
have large standard errors when applied to monthly 
DHIA records with only 8 to 10 data points per cow 
per lactation.

Random regression models and covariance functions 
can provide insight about the trajectory of biological 
processes during the lactation (e.g., milk fat synthesis, 
body tissue deposition). In addition, these models can 
provide information about correlated responses to se-
lection for traits expressed over time, such as the effect 
of selection for peak milk yield in early lactation on 
milk composition in late lactation. The results of ran-
dom regression models or covariance functions can also 
be used to facilitate the development of efficient data 
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collection protocols that maximize genetic progress per 
dollar invested in measuring phenotypes.

Multiple-Trait Models

Harvey and Lush (1952) introduced the first selection 
indices to combine production and conformation traits 
in cattle, following the work of Hazel and Lush (1942) 
and Hazel (1943), who defined an animal’s aggregate 
genotype as a linear combination of the additive genetic 
values and economic values of traits that comprise the 
overall breeding goal. The number and definition of 
traits in the aggregate genotype or breeding goal may 
differ from the number and definition of traits in the 
selection index, particularly if some traits are difficult 
or expensive to measure (e.g., feed efficiency), or if se-
lection relies on correlated traits for which phenotypes 
are more readily available.

Most models for estimation of breeding values can 
be extended to incorporate multiple traits (Henderson, 
1976). Genetic correlations between traits represent the 
extent to which genetic superiority for one trait tends 
to be inherited with genetic superiority or inferiority 
for another trait in the breeding goal. Such correlations 
can be due to pleiotropy (one gene affecting several 
traits) or they can be induced by selection. Permanent 
environmental correlations measure the extent to which 
nongenetic factors occurring at some point during an 
animal’s life may affect multiple phenotypes measured 
in subsequent months or years, whereas temporary 
environmental (residual) correlations acknowledge the 
extent to which current management practices, envi-
ronmental conditions, or recording errors affect more 
than one trait.

Examples of favorable genetic correlations in dairy 
cattle include milk yield with longevity or body condi-
tion score with female fertility, whereas examples of 
unfavorable genetic correlations include milk yield with 
female fertility or milk yield with mastitis. Enough 
genetic variation exists within the population to find 
specific individuals or families that excel for traits that 
are negatively correlated, such as high milk yield with 
good female fertility. Multiple-trait models enhance the 
accuracy of genetic predictions by bringing additional 
phenotypes from positively or negatively correlated 
traits into the analysis. In addition, multiple-trait mod-
els help alleviate selection bias if phenotypic data for 
the trait upon which historical selection decisions were 
made are available (Pollak et al., 1984). However, the 
primary advantage of a multiple-trait model is its abil-
ity to assess interrelationships between traits in the 
breeding goal; this information is critical for projecting 
the desirable and undesirable correlated responses that 
will occur due to selection on EBV for various traits.

Genotype by Environment Interactions

Generally speaking, genotype by environment 
(G×E) interactions for economically important traits 
in dairy production systems in temperate environments 
are small, at least compared with the interactions that 
plant breeders consider when matching lines or variet-
ies with photoperiod, temperature, moisture, and soil 
conditions. Important G×E interactions exist between 
temperate and tropical environments, so farmers in 
countries such as Brazil or Thailand tend to avoid 
purebred cattle from the common European breeds and 
prefer cows with 12.5 to 37.5% inheritance of breeds 
that are adapted to local temperature-humidity condi-
tions, tick-borne illnesses, and infectious diseases.

Multiple-trait models are often used to assess G×E 
interactions. For example, one can consider milk pro-
duction in a confined herd with a TMR and milk pro-
duction in a pasture-based herd with rotational grazing 
as separate but correlated traits (Weigel et al., 1999). 
Phenotypes of the same animals in both production 
systems (as a plant breeder would do by planting the 
same variety in different fields) are not necessary, be-
cause genetic relationships between cows in different 
systems allow partitioning of phenotypic covariances 
between environments into their genetic and environ-
mental components.

Reaction norm models, which are conceptually simi-
lar to covariance functions, can describe the trajectory 
of genetic or environmental effects across some gradi-
ent, usually a gradient that spans overall management 
level or specific environmental conditions (Strandberg 
et al., 2009). A conceptually similar approach was used 
by Ravagnolo et al. (2000) when modeling the effect of 
heat stress on milk yield and fertility using temperature-
humidity index (THI) data from local weather stations. 
Each animal is hypothesized to have a specific intercept 
for the onset of heat stress—the THI at which a decline 
in milk yield or fertility is observed for a particular cow. 
In addition, each animal is assumed to have a specific 
slope, which represents the rate of decline in milk yield 
or fertility per additional increment of THI beyond that 
animal’s point of onset. Similar analyses have been car-
ried out in Australia to quantify the ability of individ-
ual animals or sire families to cope with the effects of 
climate change (Garner et al., 2016). A challenge with 
the implementation of heat stress, climate adaptation, 
or other reaction norm models is the presentation of re-
sults. Sire EBV for every trait in each of low, medium, 
or high THI environments would not be sensible due 
to information overload, but electronic distribution of 
results could be simple if EBV were customized to end 
users’ local environmental and production conditions. 
Customizing EBV or selection index weights to local 
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environmental and herd management conditions could 
provide additional benefits beyond precise modeling of 
G×E. For example, it would reduce the tendency for all 
farmers in a given region or country to select the same 
sires, thereby addressing the challenge of controlling 
inbreeding and maintaining genetic diversity.

INTERNATIONAL COMPARISONS

Holstein-Friesian Strain Comparison

A massive cattle breeding trial by the Food and 
Agriculture Organization (FAO) of the United Na-
tions in the 1970s involved mating 30,000 Polish Black 
and White cows on 70 state-owned farms to interna-
tional sires. Approximately 80,000 doses of semen were 
sourced from young (unproven) Holstein AI bulls in 10 
countries, although it was difficult to ensure that these 
bulls represented a random sample of the country’s 
Holstein population. This study led to great interest in 
the international trade of dairy sire semen, particularly 
the export of semen of North American Holstein bulls 
to Europe and other continents.

Conversion Equations

Early genetic comparisons of dairy sires from differ-
ent countries used regression-based “conversion equa-
tions.” The EBV of bulls with milking daughters in 
multiple countries, usually the country of origin and 
one or more importing countries, were used to develop 
conversion equations. The regression model included an 
intercept (difference in mean) and a slope coefficient 
(difference in scale), but the accuracy of converted EBV 
were generally poor, due to large standard errors of the 
intercept and slope coefficients, unless a large number 
of bulls had milking daughters in both countries.

Multiple-Trait Across-Country Evaluation

In 1995, the International Bull Evaluation Service 
(Interbull; Uppsala, Sweden) introduced the multiple-
trait across-country evaluation (MACE) method as a 
replacement for conversion equations (Schaeffer, 1994). 
This linear model approach allowed the Interbull 
Centre to generate EBV for every bull in every par-
ticipating country simultaneously. The input data were 
daughter yield deviations or deregressed EBV (with 
ancestral influence removed) from every country in 
which the bull had milk-recorded daughters, and these 
were weighted by the number of progeny per country. 
More than two dozen countries currently participate 

in Interbull sire evaluations, and the service includes 
production, type, fertility, calving, longevity, health, 
and workability traits for every major dairy cattle 
breed. Estimated genetic correlations for milk yield 
between North American and European countries tend 
to be high, in the range of 0.85 to 0.95, whereas those 
with Australia, New Zealand, and other countries with 
grazing-based production systems can be 0.75 or lower. 
Genetic correlations for conformation and fitness traits 
vary widely, due to differences in trait definitions. The 
influence of factors such as heat stress or parasite resis-
tance is largely unknown, due to the absence of tropical 
or subtropical countries in the Interbull analyses.

Member countries have provided their national bull 
EBV and pedigree files to Interbull free of charge for 
more than 2 decades, and Interbull staff have carried 
out pedigree-based meta-analyses using the MACE 
methodology. Predictions for young genome-tested 
bulls can be computed with genomic MACE (Sullivan 
and VanRaden, 2009), but most countries publish pre-
dictions derived from genotype exchanges; for example, 
the North American Consortium (which includes Great 
Britain, Italy, Switzerland, Germany, and Japan), Eu-
rogenomics (for Holsteins), or Intergenomics (for Brown 
Swiss). Exchanging genotypes and pedigrees is simpler 
than sharing and standardizing phenotypes measured 
in various ways under different conditions, and breeders 
from more than 50 countries have obtained genomic 
predictions derived from the North American reference 
population.

NONLINEAR MODELS

Threshold Models

Threshold models, introduced to the field of animal 
breeding by Gianola and Foulley (1983), allow proper 
modeling of binary or categorical traits, such as still-
birth or dystocia. Normality assumptions are violated, 
but a link function (e.g., probit, logit) matches ob-
served binary or categorical phenotypes with sire EBV 
on an underlying “liability” scale. The area under the 
curve of a normal distribution is modeled such that if 
a sire’s EBV (λ) is less than the first threshold, it is 
assigned to category 1, whereas if λ falls between the 
first and second thresholds, it is assigned to category 
2, and so on. Threshold models are commonly applied 
to calving traits, often in conjunction with maternal 
effects models, and their usage is generally limited to 
sire models (rather than animal models). In general, 
threshold models lead to slightly more precise EBV 
than can be obtained by fitting binary or categorical 
phenotypes with a conventional linear model.
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Survival Analysis

Failure-time (survival analysis) methods, such as 
Cox or Weibull proportional hazards models, are used 
widely in epidemiology to account for the presence of 
“censored” observations; that is, measurements of time 
to an event for which the starting or ending point (or 
both) is unknown. An example is longevity or length of 
productive life (PL), which is measured as time from 
first calving until death or culling due to illness, injury, 
or infertility. Cows that are still alive have observations 
that are right-censored, because their date of death or 
culling is unknown, as do cows that are sold to another 
herd for dairy purposes. Likewise, phenotypes for days 
open, a common measure of female fertility that is com-
puted as time from calving until pregnancy, are right-
censored for cows that have not yet become pregnant 
and for nonpregnant cows that left the herd for reasons 
other than infertility. Simplistic approaches, such as 
assuming a large and arbitrary value for days open 
of nonpregnant cows or longevity of living cows, have 
been implemented in many genetic evaluation systems 
(VanRaden and Klaaskate, 1993). Ducrocq et al. (1988) 
extended the Weibull proportional hazards model to in-
clude random additive genetic effects and relationships, 
which allowed computation of sire EBV for survival. 
Proper modeling of right-censored records allowed the 
inclusion of massive numbers of animals that were still 
alive, leading to more timely and accurate results. Pre-
vious studies allowed an opportunity period (e.g., 84 
mo) for cows to fully express phenotypes for productive 
life or lifetime net profit (e.g., Cassell et al., 1993), but 
by the time studies were completed and manuscripts 

were published, the youngest cows were born more than 
a decade earlier. Another advantage of this method is 
the ability to use time-sensitive covariates, which allows 
more precise modeling of management and environmen-
tal factors that can change over time.

GENOMIC SELECTION

Marker-Assisted Selection

As shown in Figure 3, tremendous genetic progress 
was achieved by selecting for EBV computed under 
the assumption of polygenic inheritance and the in-
finitesimal model (i.e., the concept that most traits are 
affected by dozens or hundreds of genes, each having 
a very small effect). Nonetheless, technologies for as-
sessing variation at the genome level, such as RFLP 
or microsatellite markers, allowed geneticists to pursue 
underlying functional mutations or QTL with large ef-
fects. Initial expectations were highly unrealistic, with 
many researchers and funding agencies believing one 
could find “the gene” that causes high milk production, 
exceptional female fertility, or appealing physical con-
formation. The number of functional mutations affect-
ing quantitative traits that have been mapped precisely 
and for which the mode of inheritance has been fully 
characterized is negligible, and the effect of single-gene 
selection has been limited to genetic defects that are 
inherited in a simple Mendelian manner.

From the late 1980s to early 2000s, various meth-
odologies were developed for marker-assisted selection. 
Information about QTL that were identified by vari-
ous methods were incorporated into linear models for 

Figure 3. Genetic trend for milk yield [milk breeding value (BV)] in United States Holstein sires (upper line) and cows (lower line), for birth 
years from 1957 to 2015.
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genetic evaluation, typically as fixed effects. One repre-
sented the EBV of a selection candidate as the sum of 
estimated effects for QTL1, QTL2, QTL3, . . ., and a 
polygenic EBV that represented unknown loci dispersed 
throughout the genome that were accommodated by the 
relationship matrix, A. Gains in genetic progress due to 
marker-assisted selection failed to meet expectations, 
as reviewed by Dekkers (2004), particularly when the 
causative mutation was unknown and selection relied 
on markers in population-wide linkage disequilibrium, 
or when selection was carried out within families using 
markers in population-wide linkage equilibrium. The 
effects of significant markers were often overestimated 
(Beavis, 1998), and many QTL with small effects were 
missed due to stringent significance thresholds (Lande 
and Thompson, 1990).

Whole-Genome Selection

The seminal genomic selection papers of Nejati-Java-
remi et al. (1997) and Meuwissen et al. (2001), coupled 
with the development of inexpensive high-throughput 
genotyping platforms for SNP markers (Matukumalli et 
al., 2009), revolutionized dairy cattle breeding. Dozens 
of methods and algorithms were developed for whole-
genome selection in plants and animals (de Los Campos 
et al., 2013), and dairy cattle breeders were at the fore-
front of this movement (VanRaden, 2008; VanRaden 
et al., 2009; Wiggans et al., 2017). Additional benefits, 
such as genome-based discovery of missing ancestors, 
can further enhance genetic progress. Early computa-
tional and statistical hurdles associated with whole-
genome selection were formidable, given the problem of 
estimating a large number (p) of SNP effects from the 
phenotypic data of a smaller number (n) of genotyped 
individuals.

BLUP Models

Mixed linear models have been used to estimate 
SNP effects, where the vector u contains SNP mark-
ers that are assumed to represent a sample from a 
normal distribution; this provides BLUP estimates 
of SNP effects that can be summed over the genome 
to obtain genomic EBV of new selection candidates 
(SNP-BLUP; Meuwissen et al., 2001). Equivalently, a 
genomic relationship matrix (G) can be constructed 
from SNP genotypes, and this replaces the pedigree-
based relationship matrix (A) in BLUP when comput-
ing genomic EBV (GBLUP). Initially, SNP-BLUP 
was more computationally demanding than GBLUP, 
because the number of SNP exceeded the number of 
genotyped animals with phenotypic records. However, 
the training populations in major dairy breeds now 

consist of tens of thousands of genotyped bulls with 
progeny data or hundreds of thousands of genotyped 
cows with performance records. The dimension of the 
mixed model coefficient matrix in GBLUP is of the 
order of the number of genotyped animals, which is 
growing very rapidly and often exceeds the number 
of SNP. Nonetheless, GBLUP is appealing due to its 
familiarity and ease of implementation among animal 
breeders who have been using BLUP for decades. The 
rapid growth in genotyped animals is due to the avail-
ability of inexpensive, low-density SNP panels, which 
typically feature 5,000 to 25,000 SNP dispersed evenly 
across the genome. These low-density genotypes can be 
matched with medium-density (50,000 to 100,000 SNP) 
or high-density (500,000 to 800,000 SNP) genotypes of 
ancestors, and missing SNP on the low-density panel 
are filled in with 95 to 99% accuracy using genotype 
imputation algorithms (Habier et al., 2009; Weigel et 
al., 2010).

Single-Step GBLUP

Legarra et al. (2009) and Misztal et al. (2009) solved 
the perplexing challenge of analyzing phenotypes from 
genotyped and nongenotyped animals simultaneously 
when computing genomic predictions. Before this de-
velopment, direct genomic predictions (direct genomic 
values, DGV) were derived from associations between 
SNP genotypes and corresponding phenotypes in the 
subset of genotyped animals. In a subsequent step, the 
DGV were combined with pedigree-based EBV of the 
same selection candidates, using a selection index or 
weighted average. An initial challenge with single-step 
GBLUP (ssGBLUP), as proposed by Legarra et al. 
(2009), was that tricks to enhance its computational 
efficiency, such as Henderson’s (1976) rapid method to 
create A−1 from pedigrees, were lacking. In ssGBLUP, 
one must create the inverse of a matrix (H) that in-
cludes blocks for genome-based relationships among 
genotyped animals, pedigree-based relationships among 
nongenotyped animals, and pedigree-based relation-
ships between genotyped and nongenotyped animals. 
Legarra et al. (2014) developed an efficient method 
for building H−1, and ssGBLUP can now be applied 
to relatively large data sets comprising genotyped and 
nongenotyped animals.

Bayesian Regression Models

Another set of models for genomic prediction was 
developed using Bayesian regression. Ordinary least-
squares regression cannot accommodate a situation 
in which the number of explanatory variables (SNP) 
exceeds the number of data points (animals with phe-
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notypes), but in Bayesian regression models, the SNP 
effects are treated as random samples from an under-
lying distribution. Bayes A (Meuwissen et al., 2001) 
assumes SNP effects are sampled from a t-distribution 
with thick tails, such that most SNP have very small 
effects but a few SNP (presumably those in linkage 
disequilibrium with nearby QTL) can have large ef-
fects. A similar method, known as Bayes B (Meuwis-
sen et al., 2001), assumes that SNP effects represent 
a mixture of 2 distributions, where a fraction (π) of 
the markers have zero effect on the phenotype and the 
remaining fraction (1 − π) have effects that follow a t-
distribution. The fractional parameter, π, can be fixed 
in advance arbitrarily or estimated from the data using 
a method such as Bayes Cπ (Habier et al., 2011). Erbe 
et al. (2012) subsequently developed Bayes R, which 
features a mixture of normal distributions and accom-
modates SNP with zero, small, medium, and large ef-
fects. Bayesian regression methods tend to outperform 
GBLUP if QTL with moderate or large effects exist, 
whereas GBLUP performs very well in situations where 
inheritance approaches the infinitesimal model. A con-
cern for the future is whether these models can provide 
robust estimates of breeding values for selection can-
didates when only a handful of animals are chosen for 
propagation with advanced reproductive technologies. 
Can our statistical models function properly with this 
extreme level of selection intensity?

Machine Learning Methods

Machine learning is a branch of artificial intelligence 
that focuses on prediction of outcomes for unobserved 
individuals (unlabeled data) by applying highly flex-
ible algorithms to the known attributes (features) 
and outcomes of observed individuals (labeled data). 
Outcomes can be continuous, categorical, or binary. In 
animal breeding, labeled data correspond to the refer-
ence population or training set of older animals with 
genotypes and phenotypes, whereas unlabeled data cor-
respond to the validation population or testing set of 
selection candidates with genotypes only. The features 
used for prediction are SNP genotypes. Countless ma-
chine learning algorithms exist, and no single method 
provides universally superior predictions—the optimal 
method and its parameters vary from one application 
to the next.

As the popularity of machine learning has exploded 
in other fields, it has gained footing in genomic predic-
tion of livestock as well. Machine learning algorithms 
are widely known for their ability to discover patterns 
in large, messy data sets, even when data regarding 
some potential explanatory variables are missing. Long 
et al. (2007) was among the first animal breeders to 

apply machine learning to genomic prediction, using a 
filter-wrapper method for SNP-based classification of 
health traits in broiler chickens. A subsequent study 
by González-Recio et al. (2010) focused on a boosting 
algorithm for genomic prediction of the lifetime net 
merit of Holstein sires, whereas Okut et al. (2011) used 
an artificial neural network to predict the body mass 
index of mice using dense molecular markers. Yao et 
al. (2013) showed the tremendous flexibility of machine 
learning methods by using a random forest algorithm to 
identify potentially additive and epistatic QTL affect-
ing residual feed intake in dairy cattle. More recently, 
Ehret et al. (2015) used an artificial neural network to 
predict milk production breeding values of Holstein-
Friesian and Fleckvieh sires in Germany.

Machine learning, particularly deep learning algo-
rithms for implementation of multi-layer artificial neu-
ral networks, has great potential for enhancing genomic 
selection and dairy herd management. The ability of 
these algorithms to discover intricate patterns in messy 
data and predict outcomes more effectively than con-
ventional statistical methods has been demonstrated 
in a variety of fields. Powerful algorithms are readily 
available in commercial and public domain software, 
but they are “black box” in nature. The end user must 
understand basic concepts, such as how to construct 
training and testing sets that are independent and ap-
propriate for the intended use, how to tune the param-
eters of a given model or algorithm, and how to avoid 
over-fitting the training data and making unrealistic 
conclusions about the model’s predictive ability in 
future applications. The flexibility of machine learn-
ing algorithms may be valuable when incorporating 
biological knowledge gleaned from designed experi-
ments, along with massive quantities of genomic and 
phenotypic data, for predicting the breeding values of 
selection candidates.

Inbreeding

Inbreeding coefficients are used to monitor the loss of 
genetic diversity within a breed over time and to account 
for the effects of inbreeding depression when comput-
ing genetic evaluations. Expected future inbreeding has 
been calculated by the USDA since 1998, by measur-
ing the relationship between each bull and a sample of 
females from the same breed, and this statistic can be 
used to identify “outcross” bulls that are lowly related 
to the breed. Since 2005, USDA genetic evaluations 
have been adjusted for differences between the inbreed-
ing of actual milk-recorded daughters and that of ex-
pected future mates, which can occur if a bull’s original 
mates are not a random sample of the breed. Genomic 
measures of inbreeding, such as percent heterozygosity 
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or runs of homozygosity, can provide more precise mea-
sures of similarity at the genome level. Genome-based 
predictions of the inbreeding of hypothetical calves 
from a given cow and her prospective mates can facili-
tate mate allocation decisions, and genomic data can 
provide new insights into the genetic basis of inherited 
defects and inbreeding depression (VanRaden et al., 
2011). Assessment of breed composition using genomic 
data is now routine, but effective methods for utilizing 
genomic data in crossbreeding systems are lacking. Loss 
of within-breed genetic diversity remains a concern, 
and stewards of the breeds should monitor the balance 
between rapid genetic progress and maintenance of di-
versity. There is no reason for a single Holstein bull to 
sire >3,000 progeny-tested sons that dominate the bull 
barns of AI studs on every continent, yet this has hap-
pened in practice. And although methods for constrain-
ing the rate of change in additive genetic relationships 
over time are available, based on optimal contribution 
theory (Meuwissen, 1997), these methods are not used 
widely in practice. Implementation of farm, region, or 
production system-specific EBV and selection indices 
would effectively address the issues of inbreeding and 
genetic diversity, while also capturing the benefits of 
G×E associated with local adaptation.

Phenotype Prediction and Management Diagnostics

Animal breeders have focused, almost obsessively, 
on expected performance of the offspring of selection 
candidates in the next generation. Performance of ani-
mals in the current generation is often an afterthought. 
They also have a tendency to eliminate, via data ed-
iting, exceptions that seem to arise from nongenetic 
causes. For example, cows that calve with twins are 
usually removed from dystocia and stillbirth analyses, 
cows that die in early lactation (before the first DHIA 
test) are removed from milk yield evaluations, and cows 
that are culled before the end of the opportunity period 
for a given disease may be discarded from health trait 
analyses. However, farmers must manage their busi-
nesses based on the income and expenses of all animals 
in the current generation, including those that animal 
breeders would consider as exceptions. Equations for 
predicting future phenotypes, such as estimated rela-
tive producing ability (ERPA) or most probable pro-
ducing ability (MPPA), can be computed easily from a 
cow’s EBV and corresponding estimates of permanent 
environmental effects and other relevant explanatory 
variables. Predicted future phenotypes can incorpo-
rate nonadditive genetic effects, which are ignored in 
pedigree-based or genomic applications of BLUP, and 
this could become particularly informative regarding 
specific mutations and their mode of action. Values of 

MPPA, ERPA, and similar metrics have been provided 
to farmers for decades in reports from dairy records 
processing centers, but this information is rarely used 
when making culling and management decisions.

Now that genomic testing is widespread, with tens 
of thousands of calves tested each month, the utility 
of predicted future phenotypes has increased dramati-
cally. Well-managed herds with modern facilities have 
excess heifer calves relative to the number of replace-
ments needed to maintain herd size, and feed, labor, 
and housing costs associated with rearing a heifer until 
first calving often exceed the animal’s market value. 
Culling inferior heifer calves based on predicted future 
phenotypes, perhaps by repurposing them for beef 
production, is a common and economically sensible 
practice (Weigel et al., 2012). Culling decisions can be 
carried out using EBV, but genetic predisposition is an 
incomplete predictor of the future phenotype of a calf 
with significant lung damage due to respiratory disease, 
for example. Predicted phenotypes form the basis of 
genome-guided dairy herd management—the bovine 
equivalent of personalized medicine—as described by 
Weigel et al. (2017) when predicting hyperketonemia 
phenotypes of early postpartum Holstein cows.

An overlooked application of predicted phenotypes 
is the opportunity to use genomic data for evaluation 
or benchmarking of herd management practices. Ge-
nomic testing can describe the genetic predisposition 
of the calves, heifers, or cows on a given farm, and 
this information can be used to quantify the extent 
to which the farm’s housing, heat abatement, forage 
quality, ration formulation, breeding program, health 
protocols, and other management practices allow these 
animals to fully express their genetic superiority. For 
example, one might use genomic predictions for early 
postpartum health disorders (Vukasinovic et al., 2017) 
to assess a herd’s transition cow management, or one 
might regress daily milk weights of mid-lactation cows 
on genomic predictions for milk yield to assess a herd’s 
nutrition program.

SUMMARY

Over the past 100 years, genetic selection programs 
evolved from an infancy of pedigree recording, perfor-
mance recording, and daughter–dam comparisons, to 
an adulthood of animal model BLUP, whole-genome 
prediction, nonlinear models, and machine learning al-
gorithms. Grosu et al. (2014) provided a comprehensive 
review of these developments and their effect on dairy 
cattle improvement programs worldwide, whereas this 
review focuses primarily on the United States. Every 
scientific advancement by a dairy cattle breeder in the 
past century was built upon the shoulders of his or 



Journal of Dairy Science Vol. 100 No. 12, 2017

100-YEAR REVIEW: METHODS AND IMPACT OF GENETIC SELECTION 10247

her predecessors, and collaborations with colleagues in 
genetics, statistics, and computer science have yielded 
remarkable returns. Furthermore, virtually every sci-
entific advancement by a dairy cattle breeder in the 
past century was developed to solve a practical problem 
that affected dairy farmers, address a potential threat 
that could harm dairy farmers, or capitalize on an op-
portunity that might benefit dairy farmers. This was 
precisely the goal of legislators who conceived the idea 
of the land-grant university system and a network of 
federal agricultural research institutes, as well as the 
expectation of taxpayers who were asked to fund these 
endeavors. The discoveries of the next 100 years cannot 
be imagined at present, but we can hope that similar 
successes will be achieved in producing research results 
that will lead to healthy animals, vibrant farms, sat-
isfied consumers, and a sustainable food production 
system.
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Continued

APPENDIX

Table A1. Timeline of important discoveries and developments in genetic selection

Date Milestone Reference

1868–1917 Growth of pedigree data in herdbooks established by breed societies. VanRaden and Miller, 2008

1905–1917 Expansion of milk recording programs that originated in Michigan. VanRaden and Miller, 2008

1915–1917 USDA begins evaluating dairy bulls by daughter–dam comparison 
method first proposed in Denmark.

VanRaden and Miller, 2008

1918–1931 R. A. Fisher and J. B. S. Haldane lay the foundations of population and 
quantitative genetics.

Fisher, 1918; Haldane, 1932

1920s Local bull associations are formed with assistance of USDA Division of 
Dairy Herd Improvement investigations.

VanRaden and Miller, 2008

1931–1941 S. Wright and J. L. Lush develop the science of animal breeding and 
statistical methods for sire evaluation.

Lush, 1931; Wright, 1932

1934–1942 L. N. Hazel and J. L. Lush introduce the selection index method for 
estimating breeding values of dairy sires.

Hazel and Lush, 1942

1940s Artificial insemination (AI) is adopted and regional AI cooperatives are 
formed.

VanRaden and Miller, 2008

1954–1956 A. Robertson, J. M. Rendel, and C. R. Henderson propose a herdmate 
comparison, which is soon implemented by Cornell University for sire 
evaluations.

Henderson et al., 1954; 
Robertson and Rendel, 1954; 
Searle, 1964

1961 USDA adopts herdmate comparison for routine genetic evaluation of 
dairy sires.

VanRaden and Miller, 2008

1964 Publication of high-index (elite) cow lists to facilitate selection of bull 
dams.

Powell and Norman, 2006

1970s Polish breeding trial by Food and Agriculture Organization of the United 
Nations stimulates international semen trade.

Grosu et al., 2014
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Table A1 (Continued). Timeline of important discoveries and developments in genetic selection

Date Milestone Reference

1972 USDA Animal Improvement Programs laboratory formed. 
Cornell implements BLUP sire model for prediction.

Grosu et al., 2014

1974 USDA introduces the modified contemporary comparison model to 
compute predicted differences for males and cow indexes for females.

Norman et al., 1976

1976 C. R. Henderson develops a rapid method to construct the inverse of the 
additive genetic relationship matrix.

Henderson, 1976

1977 D. A. Harville proposes maximum likelihood estimation of variance 
components.

Harville, 1977

1987–1997 L. R. Schaeffer and colleagues propose random regression for 
implementation of test-day models.

Ali and Schaeffer, 1987

1989 USDA implements an animal model for computing predicted transmitting 
abilities of dairy cattle.

Wiggans and VanRaden, 1989

1995 International Bull Evaluation Service provides multiple-trait across-country 
evaluation of dairy sires.

Schaeffer, 1994

2001 T. H. E. Meuwissen, B. Hayes, and M. E. Goddard propose whole-genome 
selection with dense molecular markers.

Nejati-Javaremi et al., 1997; 
Meuwissen et al., 2001

2009 Sequencing of the bovine genome is completed and routine whole-
genomic selection is implemented by USDA.

VanRaden, 2008; Matukumalli 
et al., 2009

2008–2017 D. Gianola and colleagues apply machine learning algorithms to genomic 
prediction of livestock.

Long et al., 2007; González-
Recio et al., 2010

2009–2014 A. Legarra, I. Misztal, and I. Aguilar develop single-step genomic BLUP. Legarra et al., 2009, 2014; 
Misztal et al., 2009
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