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ABSTRACT

Genomic selection is an important tool to introduce 
feed efficiency into dairy cattle breeding. The goals of 
the current research are to estimate genomic breed-
ing values of residual feed intake (RFI) and to assess 
the prediction reliability for RFI in the US Holstein 
population. The RFI data were collected from 4,823 
lactations of 3,947 Holstein cows in 9 research herds 
in the United States, and were pre-adjusted to remove 
phenotypic correlations with milk energy, metabolic 
body weight, body weight change, and for several envi-
ronmental effects. In the current analyses, genomic pre-
dicted transmitting abilities of milk energy and of body 
weight composite were included into the RFI model to 
further remove the genetic correlations that remained 
between RFI and these energy sinks. In the first part 
of the analyses, a national genomic evaluation for RFI 
was conducted for all the Holsteins in the national 
database using a standard multi-step genomic evalu-
ation method and 60,671 SNP list. In the second part 
of the study, a single-step genomic prediction method 
was applied to estimate genomic breeding values of RFI 
for all cows with phenotypes, 5,252 elite young bulls, 
4,029 young heifers, as well as their ancestors in the 
pedigree, using a high-density genotype chip. Theo-
retical prediction reliabilities were calculated for all the 
studied animals in the single-step genomic prediction 
by direct inversion of the mixed model equations. In 
the results, breeding values were estimated for 1.6 mil-
lion genotyped Holsteins and 60 million ungenotyped 

Holsteins, The genomic predicted transmitting ability 
correlations between RFI and other traits in the index 
(e.g., fertility) are generally low, indicating minor corre-
lated responses on other index traits when selecting for 
RFI. Genomic prediction reliabilities for RFI averaged 
34% for all phenotyped animals and 13% for all 1.6 
million genotyped animals. Including genomic informa-
tion increased the prediction reliabilities for RFI com-
pared with using only pedigree information. All bulls 
had low reliabilities, and averaged to only 16% for the 
top 100 net merit progeny-tested bulls. Analyses using 
single-step genomic prediction and high-density geno-
types gave similar results to those obtained from the 
national evaluation. The average theoretical reliability 
for RFI was 18% among the elite young bulls under 5 
yr old, being lower in the younger generations of elite 
bulls compared with older bulls. To conclude, the size 
of the reference population and its relationship to the 
predicted population remain as the limiting factors in 
the genomic prediction for RFI. Continued collection 
of feed intake data is necessary so that reliabilities can 
be maintained due to close relationships of phenotyped 
animals with breeding stock. Considering the currently 
low prediction reliability and high cost of data collec-
tion, focusing RFI data collection on relatives of elite 
bulls that will have the greatest genetic contribution to 
the next generation will give more gains and profit
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INTRODUCTION

Improving feed efficiency (FE) of dairy cattle is of 
great interest to dairy farmers because feed accounts 
for the largest part of operating costs in dairy produc-
tion (European Commission, 2018; USDA, 2018). How-
ever, the available data for FE are very limited due to 
the high cost and difficulty in collecting individual feed 
intake records. Since genomic selection is well suited for 
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difficult-to-measure traits, genomic selection has been 
used as an important tool to introduce FE into dairy 
cattle breeding (Pryce et al., 2015). The application of 
genomic selection for FE has been widely developed 
over the years (Veerkamp et al., 2014; Pryce et al., 
2015; VanRaden et al., 2018). The size of the refer-
ence population and its relationship to the predicted 
population remain as the limiting factors for achieving 
a high prediction reliability for FE. However, in the 
near future, a well-designed and well-recorded refer-
ence population could allow larger achievement in the 
genomic prediction accuracy for FE (Pryce et al., 2015; 
Wallén et al., 2017; VanRaden et al., 2018).

Residual feed intake (RFI), as one proposed FE 
definition trait, is defined as the difference between an 
animal’s actual feed intake and its predicted feed intake 
calculated from various energy sinks [e.g., milk pro-
duction, metabolic body weight (MBW), and change 
of body weight (ΔBW)] (Berry and Crowley, 2013; 
Tempelman et al., 2015a; VandeHaar et al., 2016). In 
the United States, RFI could receive 16% of the total 
emphasis in lifetime net merit (NM$) if it were added 
to the selection index (VanRaden et al., 2018). Due to 
low prediction reliability, RFI might only contribute 
about 1% extra genetic progress for lifetime profit com-
pared with the current index (VanRaden et al., 2018). 
However, a 1% improvement in the rate of genetic gain 
is worth $4.5 million to the US dairy industry (Van-
Raden et al., 2018). Considering the importance of FE 
in dairy profits, a RFI data set has been built up across 
several universities and research organizations in the 
United States, and several studies have been recently 
conducted to develop trait definitions (Lu et al., 2015), 
estimate genetic parameters (Tempelman et al., 2015b; 
Manzanilla-Pech et al., 2016), and determine the ge-
netic architecture of FE (Hardie et al., 2017; Lu et al., 
2018). The development of national genomic evalua-
tions for FE has been one of the top priorities in US 
dairy cattle breeding.

The goals of the current research are to estimate ge-
nomic breeding values of RFI and to assess the predic-
tion reliabilities for RFI in the US Holstein population. 
In the first part of the study, a national genomic evalu-
ation for RFI was carried out for all the Holsteins in 
the US population using a standard multi-step genomic 
evaluation method (VanRaden et al., 2009) and 60,671 
SNP markers (Wiggans et al., 2016). In the second part 
of the study, a single-step genomic prediction method 
was applied to the same RFI data set, using a high-
density (HD) genotype chip. Genomic breeding values 
and prediction reliabilities were calculated in both parts 
of the study for several animal groups.

MATERIALS AND METHODS

Phenotypes

Residual feed intake data were collected from 4,823 
lactations of 3,947 Holstein cows in 9 research herds in 
the central and eastern United States, including Iowa 
State University (Ames), the University of Wisconsin 
(Madison), the USDA Animal Genomics and Improve-
ment Laboratory (Beltsville, MD), the University of 
Florida (Gainesville), the US Dairy Forage Research 
Center (Madison, WI), Michigan State University (East 
Lansing), the Purina Animal Nutrition Center (Gray 
Summit, MO), the Virginia Polytechnic Institute and 
State University (Blacksburg), and the Dairy Research 
Facility at the Miner Institute (Chazy, NY). Cows were 
born between 1999 and 2013. The experimental designs 
and contents of diets for the cows included in this study 
were described previously (Ferraretto et al., 2011, 2012; 
He et al., 2012; Spurlock et al., 2012; Connor et al., 
2013; Yao et al., 2013; Manzanilla-Pech et al., 2016). 
The RFI phenotypes were calculated as the residuals of 
an energy sink model, where cows’ DMI were adjusted 
for milk energy (MilkE), MBW, ΔBW, and several 
systematic effects including parity (primiparous vs. 
multiparous), DIM, experiment-specific rations, and 
test week (Tempelman et al., 2015). Nearly all RFI re-
cords were from 6-wk trials conducted during the first 
50 to 250 DIM, but 202 records were from 4-wk trials. 
Those records from 4-wk trials were given less weight 
[weight = (0.96)2 = 0.92] in the genetic analyses because 
the standard deviation was higher in 4-wk trials than 
6-wk trials (1.75 vs. 1.68 kg/d) and the phenotypic cor-
relation of 4- and 6-wk trials was 0.96.

Genotypes

Of the 3,947 cows with phenotypes, 3,505 cows were 
genotyped (502 cows with 777k SNP chip, 1,341 cows 
with 77k or 140k SNP chip, 1,251 cows with 50k SNP 
chip, and 411 cows with low-density chip). The geno-
types were imputed to the standard national genomic 
evaluation set of 60,671 SNP markers (Wiggans et al., 
2016), and were further imputed to a HD genotype panel 
of 312,614 SNP as part of a larger study that included 
2,394 HD genotypes and a total of 592,757 genotyped 
Holsteins (VanRaden et al., 2017). Therefore, 2 types 
of genotype panels were available for the genotyped 
animals in this study, the officially used set of 60,671 
SNP markers (denoted as 60k genotypes), and the HD 
genotype of 312,614 SNP markers. The quality control 
for 60k genotypes followed the procedures in (Wiggans 
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et al., 2010). High-density genotypes of 312,614 mark-
ers were available for 23,867 animals in the pedigree 
file. Animals and SNP with call rates <0.90, SNP with 
minor allele frequencies <0.05, monomorphic SNP, 
SNP deviating from Hardy-Weinberg equilibrium ex-
pectation, and animals with parent-progeny Mendelian 
conflicts were omitted from the HD genotypes using the 
preGSf90 program (version 1.10) (Misztal et al., 2018). 
After data filtering, a total of 278,524 SNP remained 
in the HD genotypes for 22,729 animals in the pedigree 
file.

National Genomic Evaluation for RFI

The genetic model for RFI was described previously 
in (VanRaden et al., 2018), where the model included 
the phenotype of RFI records, fixed effects of a few 
environmental effects, regression on inbreeding coeffi-
cients (from pedigree analyses), regression on genomic 
predicted transmitting ability (GPTA) for MilkE, re-
gression on GPTA for body weight composite (BWC), 
and random effects of additive genetics, permanent 
environment, and random residual. The regressions on 
GPTA for MilkE and GPTA for BWC removed the re-
maining genetic correlations between RFI and MilkE/
BWC that were not completely removed by the pheno-
typic regressions in the calculation of RFI (VanRaden 
et al., 2018).

Variance components were estimated for RFI phe-
notypes using MMAP release 2017_08_18 (O’Connell, 
2017) with a repeatability model using either pedigree 
or genomic relationships among the cows. The esti-
mated variance components were applied to further 
genomic evaluation for RFI.

A multi-step genomic evaluation method was used 
in the national genomic evaluation for RFI (VanRaden 
et al., 2009). A traditional evaluation was first carried 
out to estimate breeding values of RFI for more than 
60 million Holsteins using pedigree relationships. The 
EBV from the traditional evaluation were then de-re-
gressed and used as pseudo-phenotypes in the genomic 
evaluation to predict direct genomic values of RFI for 
1.6 million genotyped Holsteins, using 60,671 SNP 
markers. In addition, trait deviations for RFI analo-
gous to yield deviations were computed as RFI minus 
all nongenetic effects in the model and considered for 
use as the dependent variable instead of de-regressed 
EBV, but those gave slightly lower accuracies and lower 
correlations with single-step evaluations (results not 
shown).

Allele substitution effects for the SNP were estimated 
from de-regressed traditional EBV using an infinitesi-

mal allele model with a heavy-tailed prior, in which 
smaller effects are regressed further toward 0 and mark-
ers with larger effects are regressed less to account for 
a non-normal distribution of marker effects (VanRaden, 
2008). Final genomic breeding values (GEBV) com-
bined 3 terms by selection index: (1) direct genomic 
value prediction, (2) parent average computed from the 
subset of genotyped ancestors using traditional rela-
tionships, and (3) parent average computed from all 
ancestors (VanRaden et al., 2009).

Reliability of prediction was estimated by differ-
ent methods, including approximating reliabilities for 
evaluation (VanRaden et al., 2009; Liu et al., 2017), 
5-way cross-validation (VanRaden and Hutchison, 
2018), and using SCS data from the research cows to 
mimic RFI and estimate reliability using PTA correla-
tions between research herd and national data for SCS 
since SCS has a similar heritability to RFI, but many 
more historic records in the database (VanRaden et 
al., 2018). The approximated genomic reliabilities for 
RFI were discounted by a factor of 0.3 to adjust the 
expected reliability to the observed reliability based on 
RFI validation studies using correlations from a 5-way 
cross-validation (VanRaden and Hutchison, 2018) and 
using SCS to mimic RFI (VanRaden et al., 2018). In 
addition, prediction reliabilities for RFI were also cal-
culated by direct inversion of mixed model equations 
in the next part of the study on single-step genomic 
evaluation for RFI.

Single-Step Genomic Evaluation for RFI  
Using HD Genotypes

In the second part of the study, a single-step GBLUP 
method (ssGBLUP) was applied to estimate GEBV 
and to assess prediction reliabilities for RFI, using the 
same RFI data set but using HD genotypes for predic-
tion. The ssGBLUP analysis for RFI was carried out 
using the program BLUPF90 (version 1.58) (Misztal 
et al., 2018), using a blended H matrix to combine 
pedigree and genomic information (Aguilar et al., 2010; 
Christensen and Lund, 2010). Pedigrees used in this 
ssGBLUP analysis traced back as many generations as 
possible for all cows with phenotypes and 5,252 elite 
young bulls under 5 yr old (based on the national evalu-
ation in April 2018) and 4,029 heifers without lactation 
records born after January 2010 in the US research 
herds in which feed intake data were collected. The 
elite young bulls in the national database were included 
in the pedigree so that we would be able to estimate the 
prediction reliabilities for the young generations of top 
bulls. The young heifers in the research herds in which 
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intake data were collected should have closer relation-
ships on average with the phenotyped cows, so it would 
be interesting to assess their prediction reliabilities. 
Pedigree included 94,900 animals, among which 22,729 
animals have HD genotype information for the follow-
ing single-step genomic evaluation for RFI.

The RFI model was based on VanRaden et al. (2018), 
where GPTA for milk net energy and GPTA for BWC 
were applied to genetic analyses for RFI to remove the 
remaining genetic correlations between RFI and MilkE/
BWC. The GEBV for RFI estimated from the model 
were genetically and phenotypically uncorrelated with 
MilkE and BWC. The environmental effects that were 
removed from DMI to obtain RFI in Tempelman et al. 
(2015) were not included in the RFI model. The RFI 
model used in the ssGBLUP analyses was

	 y = Age-parity-grp + b1 × (GPTAmilk net energy) 	  

+ b2 × (GPTABWC) + a + pe + e,

where y is the RFI phenotype that has been adjusted 
for energy sinks of MilkE, MBW, ΔBW by phenotypic 
regressions, and several environmental effects, accord-
ing to Tempelman et al. (2015a); Age-parity-grp is the 
fixed effect of the age and parity group; GPTAmilk net energy 
is the cow’s GPTA for milk net energy (GPTAmilk net energy 
= GPTAMilk × 0.327 + GPTAFat × 12.95 + GPTAProtein 
× 7.65) obtained from the US national genomic evalu-
ation database for milk production traits; GPTABWC is 
the cow’s GPTA for BWC obtained from the US na-
tional genomic evaluation database; GPTAmilk net energy 
and GPTABWC were included to remove the remaining 
genetic correlations of RFI with milk production and 
BW traits that were not completely removed by the 
phenotypic regressions; b1 is the regression coefficient 
of cow’s RFI on GPTA of milk net energy, and b2 is the 
regression coefficient of cow’s RFI on GPTA of BWC; 
a is the random additive genetic effect with var(a) 
~ , ,N a0 Hσ2( )  where σa

2 is the additive genetic variance 
and H is the relationship matrix incorporating pedigree 
and genomic information as defined in Legarra et al. 
(2009); pe is the random permanent environmental ef-
fect to account for repeated accounts from an animal, 
with var(pe) ~ , ,N pe0 Iσ2( )  where σpe

2  is the permanent 
environmental variance and I is the identity matrix; 
and e is the random residual with var(e) ~ , ,N e0 Rσ2( )  
where σe

2 is the residual error variance and R is a di-
agonal matrix to adjust for the residual variance of 
each record based on their weights. Nearly all RFI re-
cords were from 6-wk trials but 202 records were from 
4-wk trials. Those records from 4-wk trials were given 

less emphasis (weight = 0.92), as described earlier in 
this paper. Therefore, the diagonal elements of the R 
matrix are mostly 1 (for records from 6-wk trials) and 
are 1/0.92 for records from 4-wk trials.

The variance components for RFI were estimated by 
an average information-restricted maximum likelihood 
algorithm using pedigree information implemented in 
the AIREMLF90 program (version 1.134; Misztal et al., 
2018). The estimated variance components were then 
applied to single-step genomic prediction to estimate 
GEBV, implemented by the program BLUPF90 (ver-
sion 1.58; Misztal et al., 2018). Prediction error vari-
ance (PEV) of the EBV for each animal was obtained 
by inverting the coefficient matrix of the mixed model 
equation. Theoretical reliability (REL) for each animal 
was calculated as

	 REL  
PEV

i
i

iG
= −











1 ,	

where Gi = (1 + genomic inbreeding coefficient) × σa
2 

for animal i, and σa
2 is the additive genetic variance for 

RFI obtained from the previous variance components 
estimation.

In addition, variance of GEBV divided by the ge-
netic variance was also calculated for RFI [i.e., 
var(GEBV)/ ,σa

2  where var(GEBV) is the variance of 
the GEBV of the studied animals and σa

2 is the genetic 
variance for RFI obtained from the previous variance 
component estimation].

RESULTS AND DISCUSSION

National Genomic Evaluation for RFI

Heritability. The estimated heritability for RFI 
was 0.14 with either a pedigree or genomic model. This 
heritability agrees with the previous US study by (Lu 
et al., 2015) reporting the heritability for RFI as 0.14 
when correlated traits were removed by multiple-trait 
modeling. Applying GPTA of MilkE and BWC to the 
RFI model could be one way to make RFI genetically 
uncorrelated with milk production traits and BWC in 
the selection index, to allow easy incorporation of RFI 
into NM$ in the US national evaluation. Without these 
regressions in the model, some of the top bulls for RFI 
(i.e., bulls with the lowest GPTA for RFI) were the top 
bulls for MilkE. Similar math to simultaneously model 
genetic and environmental correlations for RFI in dairy 
cattle was proposed by Lu et al. (2015, 2017). In the cur-
rent study, GPTA for MilkE and BWC used estimates 
from full national data, which should estimate genetic 
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effects more precisely than using only the research cow 
data for those traits. Predictions of the DMI correlated 
with production and BW are much more accurate using 
the large national reference populations for those traits 
than using only the research cows. Furthermore, RFI is 
more independent from (has a lower correlation with) 
important index traits and is easier to assign an eco-
nomic value. These were the main reasons to evaluate 
RFI rather than DMI in this study.

EBV and Reliabilities. The breeding values for 
RFI were estimated for 1.6 million genotyped Holsteins 
and 60 million non-genotyped Holsteins in the national 
database using the standard multi-step genomic evalua-
tion method (VanRaden et al., 2009). The average pre-
diction reliabilities were calculated for different animal 
groups (Table 1). Few daughters of any bull were mea-
sured for RFI; therefore, all bulls have low traditional 
reliabilities. Including genomic information increased 
the prediction reliability for RFI compared with using 
only pedigree information (Table 1). However, due to 
the limited data size, the average genomic reliability 
for RFI was low, at 34% for the 3,965 phenotyped cows 
and 13% for the 1.6 million genotyped Holsteins on 
average. The current genomic reliability for NM$ in 
the United States averaged 75% for young bulls and 
91% for progeny-tested bulls (VanRaden et al., 2018), 
whereas genomic reliability for RFI was much lower, at 
12% for top 100 net merit young bulls and 16% for top 
100 net merit progeny-tested sires (Table 1). For SCS, 
which has a similar heritability to RFI, the average 
genomic reliability for SCS from national evaluation is 
76% for young bulls and 89% for proven bulls, which is 
much higher than those for RFI. Compared with RFI, 
genomic prediction for SCS includes many more records 
and an extensive historical database.

The size of the reference population and its relation-
ship to the predicted population remain as the limiting 
factors in the genomic prediction for RFI. Increasing 
prediction reliability for RFI requires collecting more 
feed intake data or exchanging data internationally. 
Focusing RFI data collection on relatives of elite bulls 
that will have greatest genetic contribution to the next 
generation will lead to more gains and profit (Van-
Raden et al., 2018). Similar conclusions regarding RFI 
phenotyping were reached in Cottle and van der Werf 
(2017) on optimizing the proportion of selection candi-
dates measured for feed intake in beef cattle breeding.

GPTA Correlations Between RFI and Index 
Traits. The correlations between GPTA for RFI and 
GPTA for other traits in the index were calculated us-
ing GPTA information of the young bulls born in the 
year of 2017. Young bulls born in 2017 represent one of 
the recent generations and have more complete records 
compared with bulls born after 2017. The correlations 

of GPTA for RFI with GPTA for milk yield, milk com-
ponents, and BWC are zero, which was as expected 
based on the current RFI model setting. The GPTA 
correlation between RFI and current NM$ is −0.12, 
indicating favorable correlated response on current 
NM$ when selecting for RFI. The GPTA correlations 
of RFI with productive life, livability, and SCS are 
−0.17, −0.16, −0.07, respectively, indicating small but 
favorable genetic correlations of RFI with productive 
life, livability, and SCS. The GPTA correlations of RFI 
with fertility traits were −0.09 for daughter pregnant 
rate, −0.02 for heifer conception rate, −0.14 for cow 
conception rate, and 0.01 for gestation length. The low 
genetic correlations between RFI and fertility traits 
indicate minor correlated responses on dairy cattle 
fertility when selecting for RFI. In addition, GPTA for 
RFI and for calving traits index (including service sire 
calving ease, daughter calving ease, service sire still-
births, and daughter stillbirths) have a correlation of 
0.14. It is tempting to infer that this implies a low 
but unfavorable genetic correlation of RFI with calv-
ing traits, but PTA correlations are not equivalent to 
genetic correlations and the 2 can differ substantially, 
particularly when reliabilities are low (e.g., Calo et al., 
1973; Blanchard et al., 1983). Generally, GPTA cor-
relations are low between RFI and other traits in the 
index. However, it is worth noting that the estimates of 
GPTA correlations between RFI and other traits can 
be affected by the methods used to model RFI (e.g., 
different energy sinks included in the RFI model).

Prediction Reliability Using Single-Step Genomic 
Evaluation and HD Genotypes

The heritability estimate for RFI from ssGBLUP was 
0.14, consistent with the national evaluation for RFI 
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Table 1. Average prediction reliabilities in different animal groups in 
the national genomic evaluation for residual feed intake (RFI) in US 
Holstein dairy cattle

Animal group

RFI reliability (%)

Traditional1 Genomic2

3,965 cows with RFI phenotypes 30 34
Top 10 sires with most RFI daughters 78 85
Top 100 net merit progeny-tested sires 8 16
Top 100 net merit young bulls 3 12
1.6 million genotyped Holsteins 5 13
60 million nongenotyped Holsteins 3 3
1Traditional evaluation for RFI using pedigree relationship.
2Genomic evaluation for RFI, where reliabilities were calculated with 
a discount factor of 0.3 to match the expected reliability to observed 
reliability based on earlier RFI studies using 5-way cross-validation 
(VanRaden and Hutchison, 2018) and using SCS data to mimic RFI in 
the evaluation (VanRaden et al., 2018).
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and the previous RFI study using the same US data 
(Lu et al., 2015). The theoretical reliabilities for RFI 
were low due to the limitations of the current data size 
(Table 2). For the 3,947 cows with RFI phenotypes, 
the mean theoretical reliabilities for RFI were 0.31 and 
0.26, respectively. The theoretical reliability for the 
elite young bulls was only 0.18 on average (Table 2), 
and the reliability was lower in the younger generations 
of elite bulls compared with older bulls (Figure 1). For 
the youngest elite bulls (i.e., bulls less than 1 yr old in 
April 2018), the average theoretical reliability was only 
0.13 from single-step genomic evaluation for RFI. This 
result was consistent with the national evaluation for 
RFI where the average genomic prediction reliability 
for the top 100 net merit young bulls was 0.12 (Table 
1). Based on our current findings, the prediction reli-
abilities for RFI in elite young bulls are low given the 
current RFI data size. Continued feed intake collection 
is necessary in the coming years to prevent the next 
generations from having even lower reliabilities for RFI 
due to more distant relationships between currently 
recorded cows and future animals for selection. Higher 
reliabilities will require more feed intake information 

from more animals and especially young progeny to 
increase the reference population size and maintain its 
relationship to the predicted population. Considering 
the high cost of data collection, focusing RFI data col-
lection on relatives (daughters, sibs, or dams) of elite 
bulls that will have greatest genetic contribution to 
the next generation will give more genetic gains and 
financial profit. However, such targeted phenotyping 
of daughters of high-index bulls could result in biased 
evaluations because genotypes would not be properly 
randomized across environments. This would be con-
ceptually related to, but distinct from, preferential 
treatment (Kuhn et al., 1994) and preselection bias 
(e.g., VanRaden, 2012).

The average theoretical reliability was 0.15 for young 
heifers without lactation records born after January 
2010 in US research herds in which feed intake data 
were collected (Table 2). The young heifers from the 
research herds could be expected to have higher pre-
diction reliabilities than young heifers in other herds 
because they might have closer relationships with the 
phenotyped cows in the research herds. Another related 
question is whether RFI of lactating cows and RFI of 
growing heifers are the same trait. A previous study 
on DMI showed a genetic correlation of 0.67 (SE = 
0.24) between growing heifer DMI and that of lactating 
cows at 70 d postcalving (Berry et al., 2014). For RFI, 
Connor et al. (2019) recently reported that the pheno-
typic correlation is 0.37 for RFI in growing heifers with 
RFI during the first 100 d of lactation. The genetic 
correlation between RFI in growing heifers (n = 417) 
and RFI in first-lactation cows (n = 360) in early to 
mid-lactation was reported to be 0.58 (Nieuwhof et al., 
1992). More accurate genetic correlation estimates for 
RFI are required between growing heifers and lactat-
ing cows of differing ages. Obtaining those may require 
collecting less-dense data for FE but at more time 
points across different life stages. If the genetic cor-
relation is moderate to strong, RFI information from 
growing heifers could be used as a predictor of genetic 
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Table 2. Theoretical reliabilities (REL) for residual feed intake (RFI), SD of estimated breeding values 
(GEBV), and the variance of GEBV divided by genetic variance of RFI [i.e., var(GEBV)/σa

2] in single-step 
genomic prediction for RFI using high-density genotypes in US Holstein dairy cattle

Item

Reliability (%) by animal groups

3,947 cows with RFI phenotypes 4,029 young heifers1 5,252 elite young bulls2

Mean of REL 31 15 18
SD (GEBV) 33 21 22
var(GEBV)/σa

2 26 10 11
14,029 young heifers without lactation records born after January 2010 in US research herds in which feed 
intake data were collected.
25,252 elite young bulls less than 5 yr old (based on the national evaluation in April 2018).

Figure 1. Theoretical reliabilities by age groups for elite young 
bulls less than 5 yr old (based on the national evaluation in April 
2018) from single-step genomic prediction for residual feed intake.
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merit for RFI in lactating cows and could be used to 
improve genomic evaluation for RFI in cows. Connor 
et al. (2019) estimated a phenotypic correlation of 0.37 
for intake in growing heifers with intake in lactating 
cows, which suggests that heifer data could be used to 
increase prediction accuracy, but insufficient data were 
available for predicting genetic correlations.

Using HD genotypes in genomic prediction for RFI 
tended to give similar EBV and prediction reliability 
to the prediction using the standard 60,671 SNP set. 
In this study, the prediction reliability for RFI using 
the single-step method and HD genotypes was similar 
to that obtained from the national evaluation using 
the multi-step method with 60,671 genotypes. An ex-
tra study (unpublished data) on RFI has been done 
to compare predictions using 60,671 SNP set and HD 
genotypes, by applying the same RFI data set and the 
single-step genomic prediction method. In the results, 
analyses using HD genotypes and 60,671 genotypes 
gave similar EBV (correlation = 0.985) and prediction 
reliabilities (correlation = 0.999) for genotyped animals 
in the pedigree. Further studies are required to inves-
tigate the potential benefit of using HD genotypes in 
genomic prediction for RFI.

Publication of GEBV for Feed Efficiency

Genetic rankings for FE could be published in several 
ways based on our current results from RFI. First, RFI 
can be published as RFI$, representing the dollar value 
of RFI per lifetime. However, prediction reliabilities for 
RFI were generally low based on current data, so RFI 
could be combined with other FE-related traits in the 
definition of FE. Feed saved combines the reductions in 
feed eaten associated with RFI and lower maintenance 
predicted from BW (Pryce et al., 2015). The heritabil-
ity for RFI is low to moderate at around 0.1 to 0.2 
(Manzanilla-Pech et al., 2016), and the heritability for 
BW is moderate to high at around 0.5 to 0.6 (Li et 
al., 2018). Feed saved should have a higher heritabil-
ity than RFI, and hence leads to a higher reliability 
compared with RFI. Based on the current US data set, 
if we assume prediction reliabilities average 12% for 
RFI and 72% for BWC in young animals, the com-
bined average reliability for feed saved will be about 
18% for young animals (VanRaden et al., 2018). In 
addition to Feed Saved, the Holstein Association USA 
(Brattleboro, VT) has published an economic estimate 
of feed efficiency (FEHA) that combines the net income 
expected from higher milk yield and net loss expected 
from larger BWC (i.e., FEHA = dollar value of milk pro-
duced − feed costs of extra milk − extra maintenance 

costs), but without using RFI information (Holstein 
Association USA, 2017). A more complete measure 
of feed efficiency (FeedEff) can be further subtracting 
the cost of RFI (RFI$) from FEHA to account for the 
actual feed consumed (i.e., FeedEff = FEHA − RFI$) 
(VanRaden et al., 2018).

Future Perspectives

Current findings indicate challenges but also op-
portunities in genomic evaluation for RFI. Obtaining 
more RFI phenotypes (with a good design for data 
recording) remains the main issue for this new trait. 
Increases in genomic reliability with additional RFI 
data can be forecasted. For young calves, such reli-
ability could be 12% with 5,000, 19% with 10,000, 31% 
with 20,000, and 52% with 50,000 cows in the refer-
ence population (VanRaden and Hutchison, 2018). A 
related question is the timeliness of data collection. 
The prediction reliability for the youngest elite bulls 
(Figure 1) decreased substantially because they were 
less genetically connected to the previously recorded 
reference cows. A stable or growing rate of FE data 
collection is required so that newly arriving records 
provide more information than what is lost as previous 
data become more remote from current selection can-
didates. Thus, among data sets of 5,000 total records, 
recent records from 1,000 cows per year for 5 yr are 
better than 500 cows per year for 10 yr or 250 cows 
per year for 20 yr. Because data collection for FE is 
expensive, experimental design should guide the time 
plan of data collection, and international collaboration 
can help maximize reference population size.

Several other strategies in addition to maximizing 
size and timeliness of the reference population can help 
optimize FE data collection. First, data collection could 
be focused on certain groups of animals (e.g., relatives 
of elite bulls). Obtaining RFI phenotypes from rela-
tives (daughters, sibs, or dams) of elite bulls that have 
greatest genetic contribution to the next generation 
will produce more genetic gains and financial profit. 
Second, considering the high cost of data collection, 
sparse recording of feed intake data on more animals 
could be more useful to obtain large-scale RFI pheno-
types and to obtain FE information from different life 
stages of animals (Negussie et al., 2019). Third, strate-
gies to use new phenotypes (e.g., milk spectra data) or 
on-farm applications (e.g., sensors, smart collars, and 
imaging technology) may also provide opportunities to 
generate proxy phenotypes for DMI to speed up data 
collection for FE (Chizzotti et al., 2015; Ruuska et al., 
2016; Thomasen et al., 2018).

Li et al.: GENOMIC PREDICTION OF RESIDUAL FEED INTAKE
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CONCLUSIONS

Residual feed intake, a candidate FE trait in dairy 
cattle, can be defined to be genetically uncorrelated 
with major energy sink traits (e.g., milk production, 
BW), by including GPTA of these energy sink traits 
in the genetic analyses for RFI. Including RFI in the 
US national dairy cattle evaluation gave the EBV es-
timates of RFI for 1.6 million genotyped Holsteins and 
60 million ungenotyped Holsteins. The GPTA correla-
tions between RFI and other traits in the index (e.g., 
fertility) are generally low, indicating minor correlated 
responses on other index traits when selecting for RFI. 
Including genomic information increased the prediction 
reliability for RFI compared with using only pedigree 
information. Due to the limitation of data size, the cur-
rent prediction reliability was low, 34% for phenotyped 
animals, 13% for 1.6 million genotyped animals, 16% 
for the top 100 net merit progeny-tested bulls. The 
theoretical reliability for the elite young bulls under 
5 yr old was only 0.18 on average, and the reliabil-
ity was lower in the younger generations of elite bulls 
compared with older bulls. Continued feed intake col-
lection is necessary in the coming years to prevent the 
next generations to have lower reliabilities due to the 
lower relationship between currently recorded cows and 
future animals for selection. Considering the currently 
low prediction reliability and high cost of data collec-
tion, focusing RFI data collection on relatives of elite 
bulls that will have greatest genetic contribution to the 
next generation will give more gains and profit.
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