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ABSTRACT

The advent of genomic selection paved the way for
an unprecedented acceleration in genetic progress. The
increased ability to select superior individuals has been
coupled with a drastic reduction in the generation
interval for most dairy populations, representing both
an opportunity and a challenge. Homozygosity is now
rapidly accumulating in dairy populations. Currently,
inbreeding depression is managed mostly by culling at
the farm level and by controlling the overall accumula-
tion of homozygosity at the population level. A better
understanding of how homozygosity and recessive load
are related will guarantee continued genetic improve-
ment while curtailing the accumulation of harmful re-
cessives and maintaining enough genetic variability to
ensure the possibility of selection in the face of chang-
ing environmental conditions. In this review, we present
a snapshot of the current dairy selection structure as
it relates to response to selection and accumulation
of homozygosity, briefly outline the main approaches
currently used to manage inbreeding and overall vari-
ability, and present some approaches that can be used
in the short term to control accumulation of harmful
recessives while maintaining sustained selection pres-
sure.
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INBREEDING AND GENOMIC INFORMATION
Genomic Selection as a Breeding Standard

After its initial implementation in the US dairy
population (Wiggans et al., 2017), genomic selection
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has become a consolidated approach, which is now the
standard in many breeding domains. including the vast
majority of livestock (Georges et al., 2019), crop (Wal-
lace et al., 2018), and forestry (Grattapaglia, 2017)
species. Although genomic selection has been hailed as
a revolutionary shift in animal breeding, it represents
the latest in a series of iterations in the Improvement
of efficiency of selection, which spans a good part of 2
centuries. The discovery of single-gene transmission by
Mendel (1965), the theorization of multiple gene in-
heritance by Fisher (1930), the introduction of pedigree
relationships by Wright (1922), the formalization of
the selection index by Hazel and Lush (1942), and the
implementation of linear mixed models by Henderson
(1953) all represent key innovations in the efficiency
of discriminating among individuals on the basis of
their genetic value that precede the use of genome-wide
marker maps in prediction (Meuwissen et al., 2001).

Each of these incremental improvements increased
the efficiency of selection. Similarly, and inevitably,
these improvements have also resulted in an increase in
inbreeding. The accumulation of inbreeding in selected
populations is unavoidable, and it is the consequence
of intense directional selection. the high disparity of
reproductive success introduced by AI and other re-
productive advancements, and of the use of BLUP and
truncation selection, which favor the overrepresentation
of a few elite families (Miglior and Beavers, 2014), lead-
ing to large variability in family size and the consequent
reduction of the effective population size and higher
rates of inbreeding.

How Genomic Selection Affects Inbreeding

Several authors have discussed the influence of ge-
nomic selection on inbreeding (Howard et al., 2017a;
Varona et al., 2018; Baes et al., 2019). Here, we will
briefly recap a few of the main concepts. On one side,
under genomic selection. we can observe an increased
rate of inbreeding per year due to shortening of the
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generation interval. At the same time, the rate of in-
breeding per generation should decrease because of our
increased ability to discriminate Mendelian sampling
among individuals, as well as the ability to access a
larger pool of genotyped individuals compared with tra-
ditional progeny test schemes (Daetwyler et al., 2007).
In general terms, all these phenomena are real. The net
result of these combined processes, though, is that un-
der genomic selection, homozygosity accumulates at a
faster rate than under pedigree selection. Young bulls’
pedigree inbreeding in Holstein has increased from
7.06% in 2012 to 9.59% in 2019. In the same period,
genomic inbreeding has increased from 7.89 to 13.02%.
Similar estimates can be seen for Jersey (from 6.49 to
8.76% pedigree and 8.93 to 10.87% genomic) and for
Brown Swiss (from 7.30 to 9.22% pedigree, and from
8.20 to 10.87% genomic; CDCB April 2019, https://
queries.uscdch.com/eval /summary/inbrd.cfm). Anoth-
er example of this phenomenon has been documented
in French cattle, with a significant increase in pedigree
inbreeding for Normande (0.059 to 0.088% per year)
and Holstein (0.19 to 0.49% per year) and genomic
inbreeding for Holstein (0.080 to 0.55% per year) under
genomic selection compared with selection by progeny
testing (Doublet et al., 2019).

WHAT DOES INBREEDING MEASURE?

In the previous section, we discussed how the process
of selection affects the accumulation of inbreeding. Of-
ten, the implicit assumption made concerning inbreed-
ing is that its accumulation is harmful tout court. It is
important to note that, in itself, inbreeding is neither
good nor bad. In selecting for the improvement of a
particular trait (in most cases, we are interested in in-
creasing the yield of a particular production trait), the
accumulation of homozygosity at favorable variants is
the primary objective. This, in turn, has implications
for the amount of genetic variability and the response to
selection in future generations, which will be discussed
later. Accumulation of inbreeding depression is, for the
most part, the unintended result of how selection is
conducted in breeding programs.

Inbreeding and Inbreeding Depression

A working definition of inbreeding, following that of
Malécot (1948), was given by Kimura and Crow (1963)
as the probability that 2 random alleles at the same
locus from 2 uniting gametes are identical by descent
from a common ancestor. At a single locus, in a random
mating population, the mean of a population is defined
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as u = a(p — q) + 2dpq, where p and ¢ are the allele
frequencies of the locus and a and d are the genotypic
values for additive and dominance, respectively (Fal-
coner and Mackay, 1996). Under inbreeding, the previ-
ous equation is modified to u = a(p — ¢) + 2d(1 — F)
pqg. where F'is the inbreeding coefficient. The popula-
tion mean, therefore, under inbreeding. is reduced by a
quantity of —2pqFd. This reduction is usually referred
to as inbreeding depression. The first thing to notice is
that the insurgence of inbreeding depression depends
on dominance. If no dominance is present, the change
in population mean will be zero, and inbreeding will
not have an effect on the population. Conversely, for a
single locus, if d > 0, inbreeding will decrease the mean
of the population and if d < 0, inbreeding will increase
it. If we generalize this to multiple loci, the insurgence
of inbreeding depression requires dominance to be di-
rectional (dominance effects are, on average, negative).
This agrees with empirical results. and recessive delete-
rious mutations and partial directional dominance are
normally considered the drivers of inbreeding depres-
sion (Charlesworth and Willis, 2009) and are usually
referred to as genomic or recessive load. Under this
scenario, deleterious alleles are (partially) recessive and
are generated by recurrent mutation so that deleteri-
ous alleles in the “base” population are present in the
heterozygous state. Inbreeding increases the frequency
of homozygotes for deleterious alleles as a result of se-
lection and drift, which results in inbreeding depression
(Falconer and Mackay, 1996).

Genetic Variance Under Inbreeding

The relationship of inbreeding with genetic variance
is nuanced. The total genetic variance under inbreeding
as defined by Weir and Cockerham (1977) can be given
by the formula

Ver=(1+F)Vy+ 1 -F)Vp+ ...,

where V, and V) are the additive and dominance vari-
ances and “...” are the remaining terms related to the
covariance between additive and dominance as well as
the variance of inbreeding depression itself; they are
omitted here for simplicity but an extensive treatment
of the subject can be found in Abney et al. (2000).
It should be noted that in the absence of dominance
variation, the total genetic variance is given by (1 +
F)Vy and is larger than that for the founder popula-
tion. This holds only in the absence of dominance, and
results with nonadditive variation are more complex

(Walsh and Lynch, 2018).
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PRIMARY QUESTION

Given what we have outlined above, it should be
evident that inbreeding is an imperfect measure of the
underlying recessive load of an individual because it
cannot distinguish the accumulation of homozygosity
for favorable variants, compared with neutral or delete-
rious loci. Some populations, such as US Jersey cattle,
have even undergone purging inbreeding (Gulisija and
Crow, 2007). Two individuals could therefore, in prin-
ciple, have the same inbreeding coefficient but a dif-
ferent deleterious load, simply because inbreeding has
been accumulated in different regions of the genome. A
perfect inbreeding management strategy would allow
discrimination between these 2 individuals based on the
amount of deleterious recessive each carries.

Identifying Lethals and Sublethals

Genomic information has made the identification
of lethal recessives extremely effective. To date, at
least 16 known recessives are tracked in the US dairy
population (Cole et al., 2018). This is partly due to
the increased resolution that larger marker panels and
sequence information provide, facilitating the detection
of lethals via reverse genetic screening (Charlier et al.,
2016), but it also stems from the fact that recessives
can be identified, at least in the first instance, with sim-
ple statistical tools, essentially by tracking distortions
from the expected genotypic frequencies (VanRaden et
al., 2011a). When recessives are identified with a high
degree of accuracy, then mating avoidance can be ef-
fectively deployed. Cole et al. (2016) estimated annual
losses of at least $10.7 million due to known recessives.
As the number of recessives identified increases, man-
aging them through mating becomes more involved.
Heuristic methods have been proposed by Cole (2015)
to manage the total lethal recessive load. More recently,
Johnsson and colleagues (2019) proposed the use of ge-
nome editing to remove deleterious recessives. When
mutations in the population are partially dominant
and harmful but have small to moderate-sized effects,
methods based on genotype frequency distortions are
not a viable solution. The identification of partially
detrimental recessives then has to rely on the estima-
tion of dominance effects. Unfortunately, this presents
several challenges. The proportion of genetic variance
at a causal variant that is captured by markers is p* for
additive variants, but p4 for dominant variants, where
p is the allelic correlation (Zhu et al., 2015). Additive
and dominance effects are, in general, not independent
either because of linkage disequilibrium or by virtue
of true covariance between the 2 effects (Huang and
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Mackay, 2016). Finally, given the need for directionality
of dominance variation, the effect of dominant variants
should already be partially accounted for by inbreeding
(Xiang et al., 2016). To the last point, a better formula-
tion of models including dominance has been recently
proposed by Vitezica et al. (2017), which makes domi-
nance estimates free of inbreeding effects. In spite of
this, the identification of partial dominance variants
remains a difficult task. As the number of individuals
genotyped and marker resolutions increase, our ability
to identify partial dominance and partial recessives will
also increase (e.g., Jiang et al., 2019). In the short term,
heuristic approaches aimed at identifying haplotypes
of negative effect (regardless of their mode of action),
as proposed by Howard et al. (2017b), or, to a larger
extent, methods to constrain homozygosity accumula-
tion based on genome-wide measures of inbreeding will
remain the most effective approaches.

Global Measures of Inbreeding and Recessive Load

Although estimates of genomic values have received
a lot of attention in the past few years, estimates of
inbreeding depression in dairy are less common in the
literature. Miglior and colleagues (1995a,b) estimated
the impact of inbreeding depression in health and
production traits in Canadian dairy cattle using non-
additive genetic models. A 1% increase in inbreeding
resulted in a 0.01 increase in lactation SCS (Miglior et
al., 1995a), 25.1 kg less milk, 0.9 kg less fat, 0.8 kg less
protein, and an increase in fat and protein percentage
of 0.05% (Miglior et al., 1995b). Smith et al. (1998)
indicated that a 1% increase in the inbreeding coef-
ficient of Holstein resulted in 37 kg less milk, 1.2 kg
less fat, and 1.2 kg less protein per lactation, along
with increases in first-calving age of 0.4 d and calving
interval of 0.3 d, and a reduction in length of produc-
tive life of 13.1 d. More recent studies (Pryvce et al.,
2012; Cole, 2015; Doekes et al., 2019) have substan-
tially confirmed these figures. In Table 1 are reported
the current estimates of inbreeding depression used by
the Council of Dairy Cattle Breeding and their impact
on the Net Merit index. Table 2 reports the —log;o( P-
values) and estimates of pedigree genomic inbreeding
depression obtained from yield deviations of a sample
of approximately 15,000 Holstein cows born between
2013 and 2015. Estimates of inbreeding depressions
were higher for all traits compared with those currently
used in PTA correction, but that may reflect the small
sample size in the analysis, rather than actual differ-
ences in population values. Interestingly, in all cases,
the significance of genomic inbreeding was higher than
that of pedigree inbreeding, suggesting that genomic
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Table 1. Inbreeding (F) depression and Net Merit value for US dairy

Inbreeding Trait value in Value, $
Trait depression (1%) Net Merit, $ 1% B
Milk (Ib) —63.90 —0.004 0.30
Fat (Ib) —2.37 3.56 —8.40
Protein (1b) —1.89 3.81 —7.20
Productive life (mo) —0.26 21.00 —5.50
SCS 0.004 —117.00 —0.50
Daughter pregnancy rate —0.13 11.00 —1.40
Cow conception rate —0.16 2.20 —0.40
Heifer conception rate —0.08 2.20 —0.20
Cow livability —0.08 12.00 —1.00
Net Merit § —25.00 1.00 —25.00

inbreeding might better capture the underlying true
recessive load. in accordance with what was shown by
Forutan and colleagues (2018).

MANAGING INBREEDING GLOBALLY AND LOCALLY
WITH THE USE OF GENOMIC INFORMATION

Every breeding program aims at maintaining genetic
diversity and limiting the inbreeding accumulation while
maximizing the response to selection. This is achieved
by maximizing the effective population size and mini-
mizing the rate of inbreeding. Currently, inbreeding in
the US dairy is controlled at the population level with
the use of expected future inbreeding or genomic future
inbreeding (Sun et al., 2014). These quantities are the
average (pedigree/genomic) inbreeding expected when
a bull is mated to a random sample of cows in the
population so that the higher the ratio of expected to
genomic future inbreeding, the more related the bull
is to the current population (VanRaden et al., 2011b).
Minimization of progeny inbreeding (Pryce et al., 2012),
linear programming (Weigel, 2001), look-ahead mate
selection (Shepherd, 2005), selection against lethal al-
leles (Van Eenennaam and Kinghorn, 2014; Cole et al.,
2016; Upperman et al., 2019), index selection including
Mendelian variance (Santos et al., 2019), and genomic

selection including dominance (Sun et al., 2014) have
all been proposed as methods to controlling inbreeding.

One of the most effective methods to manage genetic
variability and inbreeding over the long term is opti-
mum contribution selection (OCS; Meuwissen, 1997).
Optimum contribution selection assigns the contribu-
tions from each potential parent by minimizing the
global coancestry between prospective parents weighted
by their contributions. Although OCS has been avail-
able since the 1990s, its practical use has been limited
in dairy cattle populations. There are several reasons
for its limited adoption, but probably the main limiting
factor resides in the structure of dairy breeding. In ver-
tically integrated industries, such as swine or poultry
breeding. decisions are centralized at the nucleus level.
However, the dairy industry remains fragmented, and
breeding decisions ultimately rest with individual farm-
ers. This makes the application of systemic approaches
logistically challenging. With the adoption of genomics,
though, the dairy genetic industry is slowly reshaping,
moving toward scenarios more similar to those of other
livestock where tighter control of the population size
and structure is possible. Within this context, OCS is
probably destined to regain momentum. To this extent,
the availability of genomic data offers an opportunity
to apply OCS with a broader range of options com-

Table 2. Significance [—log,(( P-value)] and regression coefficients for 1% increase in genomic or pedigree inbreeding (F)

Pedigree F Genomic F
Regression Regression

Trait —log,( P-value) coefficient (1%) —log,( P-value) coefficient (1%)
Milk (Ib) 4.95 —78.1 8.06 —81.2
Fat (Ib) 467 363 9.96 ~3.58
Protein (1b) 3.18 —1.81 7.47 —2.86
Productive life (mo) 0.33 —0.56 1.5 —0.85
Daughter pregnancy rate 0.57 —0.12 0.8 —0.02
SCS 0.11 —0.08 0.14 ~0
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pared with pedigree information (Clark et al., 2013).
Genomic-derived breeding value estimates can explain
a portion of Mendelian sampling variation and, there-
fore, can explain more than the parent-average EBV.
Previous research has shown that using genomic re-
lationships to control inbreeding, as an alternative to
pedigree relationships, resulted in no additional genetic
gain, except in the case of very large full-sib families
(Clark et al., 2013). Engelsma et al. (2011) showed that
the benefits of using either the pedigree or the genomic
relationship in OCS algorithms vary across the genome.
Still, on average, the difference between the two is small.
In all of these cases, though, little was done to track the
actual recessive load of individuals. Recent inbreeding
produces long stretches of DNA shared by individuals.
These, in turn. will be enriched with deleterious vari-
ants that have been exposed to purging opportunities
for less time. Runs of homozygosity (ROH) have been
proposed as a measure to track recent autozygosity and
better capture recent inbreeding that is more related to
the actual recessive load of individuals (Doekes et al.,
2019). Howard and colleagues (2017a), among others,
have discussed the use of alternative metrics to mea-
sure inbreeding. yet little is known about the long-term
impact of using pedigree, genomic, or ROH measures
on genetic gains, or abhout the accumulation of harmful
mutations in a population.
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CASE STUDIES

Case Study 1: Simulation Study
on the Optimal Contribution

In this section, we present a case study in which we
have investigated the use of alternative metrics of an-
cestry in OCS for simulated scenarios using genomic
information. A production trait and a fitness trait
were generated with GenoDiver (Howard et al., 2017¢)
software following typical genetic architectures of dairy
populations. We simulated a polygenic vield trait (h* =
0.45; 1,000 QTL). A fitness trait was simulated under
partial dominance, with a proportion of lethal loci of
5% of the total number of fitness trait loci (FTL); then,
OCS was simulated for 30 generations. At each genera-
tion, genomic information was used to obtain breeding
values of individuals, whereas different measures were
used for the optimal contribution portion; namely, re-
lationships based on pedigree, genomic, and 2 different
types of ROH (5 and 10 Mb). Selection was performed
only on the production trait. Genetic progress for all
scenarios was measured at the end of the 30 genera-
tions, along with fitness parameters, which included
homozygosity and segregating sublethal alleles.

Genome Archaitecture. A total of 54,240 biallelic
markers (minor allele frequency = 0.10) were generated

Yield Trait Architecture

Fitness Trait Architecture

5 Generations Random Mating

]
]

BLUP Selection

>
>

0Cs

NO OCS

Pedigree Genomic

ROH 10Mb

ROH 5Mb

Y Y

Y

25 Generations Selection

Figure 1. Simulation architecture of case study of alternative metrics of ancestry in optimum contribution selection (OCS) using genomic
information. Each simulation was repeated 10 times. ROH = runs of homozygosity.
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8

Figure 2. Increase in overall population homozygosity in the simulated scenarios. Without OC = no optimal contribution selection (OCS);

pedigree OC = pedigree OCS; genomic OC = genomic OCS; short ROH OC = 5-Mb runs of homozygosity (ROH) OCS. Long ROH OC = 10-

Mb ROH OCS.

distributed over 29 autosomes using GenoDiver v. 3.0.
Parameters were chosen to obtain a base population
and effective population size of approximately 100. A
population of 400 males and 1,000 females was then
created and retained as a base for the remaining of the
simulations.

Yield Trait Architecture. One thousand QTL with
additive effects were generated randomly across the 29
autosomes. All QTL were generated from a gamma dis-
tribution with shape and scale of 0.4 and 1.66. respec-
tively. A minor allele frequency of 0.05 was adopted for
QTL in the base populations. Genetic architecture was
completely determined by the QTL with an h? of 0.45.

Fitness Trait Architecture. The generation of FTL
was split among lethal and sublethal recessives. For
both categories, fitness was defined as relative fitness
and parameterized in terms of selection coefficient (s)
and dominance coefficient (k) (Wright, 1931). Selection
coefficients were generated from a gamma distribution
with different parameters for lethal and sublethal vari-
ants. As a result, sublethal loci had a mean frequency
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0.03 with a mean selection coefficient of 0.013 and a
mean degree of dominance of 0.296. An upper threshold
on sublethal loci frequency in the base population was
placed at 0.08. Conversely. lethal alleles had a mean
frequency of 0.013, a mean selection coefficient of 0.72,
and mean degree of dominance of 0.001. An upper
threshold on lethal loci frequency was placed at 0.05.
One thousand F'TL were generated for the fitness trait.

Covariance Between Fitness and Quantitative
Trazts. A pleiotropic covariance between the quanti-
tative and fitness trait of 0.2 was simulated using a
trivariate reduction algorithm.

Selection and OCS. At each generation, 50 males
and 200 females were selected and mated based on their
genomic breeding values obtained through genomic
BLUP (VanRaden, 2008). The replacement rate for each
generation was 0.8 for sires and 0.3 for females. Each
mating resulted in 3 progenies (this was done to ensure
that enough individuals were available for replacement
at each generation). At each generation, optimal contri-
bution selection was performed using the software “eva”
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(Berg et al., 2006). Four different metrics were used
for the OCS portion of the simulation. Relationships
were constrained based on pedigree; a realized genomic
relationship obtained using the VanRaden algorithm
number 2 (VanRaden, 2008), with allele frequencies
obtained from the base population after the random
mate stage; or ROH relationship matrices (Luan et al.,
2014) for ROH of 5 and 10 Mb, respectively. Details
on how these were obtained can be found in Howard
et al. (2016). Each scenario was replicated 10 times. A
pictorial schematic of the overall simulation is reported
in Figure 1.

Results. In all cases, performing no OCS resulted
in higher inbreeding, with homozygosity levels approxi-
mately 10% higher for “no OCS” scenarios compared
with all other scenarios (Figure 2). As expected, when
comparing the different inbreeding metrics used in OCS,
genomic information obtained from the diagonal of the
genomic relationship matrix was best at constraining
the increase of homozygosity, whereas pedigree informa-
tion was the worst. The ROH measures were intermedi-

o
@
2

Homozygosity %

e
in
a

5308

ate between pedigree and the GRM. Again, this was
expected because ROH minimizes only the portion of
homozygosity that resides in long, contiguous stretches
of the genome, not the overall homozygosity.

Overall homozygosity measures do not truly reflect
the recessive load of the populations under different
scenarios. Figure 3 reports the average percentages of
sublethal alleles carried at homozygous state. In this
case No_OCS resulted in a higher accumulation of
recessive load. All OCS methods constrained the ac-
cumulation of sublethal homozygous effectively. The
ROH measures were intermediate between pedigree and
genomic. Genetic progress for the simulated scenarios
is reported in Figure 4. No OCS resulted in the high-
est genetic gain, followed by ROH, genomic OCS, and
pedigree OCS. It should be noted that in this respect
the simulation is simplistic because it assumes that no
new additive (or dominance) variation is generated and
that genomic architecture remains constant over time.
This might not be the case in real scenarios and results
need to be interpreted with caution. Furthermore, as

Optimal Contribution Method
= Without OC

= Pedigree OC

= Genomic OC

= Short ROH OC

= Long ROHOC

10 15 20

Generation

25 30

Figure 3. Increase in homozygous sublethal over generations in the simulated scenarios. Without OC = no optimal contribution selection
(OCS8); pedigree OC = pedigree OCS; genomic OC = genomic OCS; short ROH OC = 5-Mb runs of homozygosity (ROH) OCS. Long ROH

OC = 10-Mb ROH OCS.
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a consequence of this simplification, the exhaustion
of current genetic variability reflects the “success” in
selection.

Case Study 2: Characterization
of the Age of Inbreeding

The premise of using ROH as a measure of inbreed-
ing is related to the need to control recent inbreeding,
the one for which deleterious variants had a relatively
short purging opportunity. Among the disadvantages
of ROH measures of inbreeding is the need to establish
an arbitrary cutoff delimiting the ROH (and, therefore,
the time considered). Often, this threshold is based
on the a priori expectation of the investigator. Druet
and Gautier (2017) presented an alternative, elegant,
and self-contained approach to this problem. In their
work, they aimed at identifying segments of the ge-
nome that are homozygous by descent (HBD). These
segments occur when individuals inherit copies of an

@

Genetic Progress
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ancestral chromosome. As for ROH, the length of the
HBD depends on the number of generations and the
population’s structure. But unlike ROH, HBD are ex-
plicitly modeled through a hidden Markov model. The
result is that the overall inbreeding can then be divided
into different age classes, and these classes can then
be related to the total depression load based on their
age. In Figure 5, the HBD distribution of the 15,000
Holsteins described in previous sections is reported.
Individuals had genotypes available for 67,904 SNP
markers. For this analysis, the R package “RZooRoH”
(Bertrand et al., 2019) was used, which implements the
method of Druet and Gautier (2017) described above.
Partial homozygosity was obtained for a power of 2 se-
ries, including inbreeding from approximately 1 to 256
generations ago. In Figure 5, it can be seen that most
of the inbreeding in the individuals is concentrated
between 4 and 16 generations ago. It is also evident
that considerable variability in class distribution is
present among individuals. This can be better observed

Optimal Contribution Method
== Without OC

= Pedigree OC

= Genomic OC

== Short ROH OC

== Long ROH OC

20
Generation

8

Figure 4. Genetic progress (in yield units) in the simulated scenarios. Without OC = no optimal contribution selection (OCS); pedigree OC

= pedigree OCS; genomic OC = genomic OCS; short ROH OC = 5-Mb runs of homozygosity (ROH) OCS. Long ROH OC = 10-Mb ROH OCS.
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in Figure 6, in which a random sample of individual
partial inbreeding coefficients are depicted based on
their age of inbreeding. It is evident that for different
individuals with similar overall inbreeding, the contri-
bution of partial inbreeding of different age can vary
dramatically. To explore the potential effect of age of
inbreeding on inbreeding depression, we regressed these
partial coefficients on yield deviations, as outlined in
the previous section. In Table 3 we report the partial
regression coefficients for inbreeding grouped from 1 to
4 generations ago and from 4 to 64 generations. The
grouping was, in this case, done arbitrarily to explore
old versus new inbreeding; inbreeding of >64 genera-
tions ago was excluded under the assumption that it
would need to be mostly free of deleterious variants
and in recognition of the small sample of individuals
used. More in-depth analysis with a larger collection of
individuals, possibly across breeds, would need to ac-
count explicitly for all partial inbreeding coefficients. In
all cases, inbreeding depression estimates were higher
for more recent inbreeding than for older inbreeding.
Estimates were also higher than those obtained by both
pedigree and genomic information, possibly highlighting
that partial inbreeding estimates tend to overestimate
real inbreeding depression because they are likely not
independent. In addition, a scaling effect might result
in different levels of inbreeding depression. given that

5310

partial inbreeding estimates might have different vari-
ances. Finally, as inbreeding in different classes is also
a function of marker density, it is possible that denser
marker density would be needed to capture smaller
segments (and their associate effects). More research
in this area is needed to highlight the possible use of
age-related HBD partial inbreeding coefficients.

FINAL REMARKS

The adoption of genomic information as standard
practice in dairy breeding has facilitated considerably
increased genetic progress, yet it poses a challenge for
the maintenance of long-term variability and the ac-
cumulation of harmful mutations. Average losses due
to known recessives affecting fertility are currently
estimated at $5.77, $3.65, $0.94, and $2.96 in Ayr-
shire, Brown Swiss, Holstein, and Jersey, respectively
(Cole et al., 2016). Although management of lethal
mutations has become more effective in recent vears,
a large proportion of these economic losses is tied to
partial recessives of small effect. The incredible amount
of information accumulated in recent vears, with
more than 2 million cows genotyped. offers a unique
opportunity to investigate partial recessive load and
functional inbreeding depression, thus discriminating
homozygosity on the basis of its potential detrimental
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Figure 5. Distribution of partial inbreeding coefficients (F) for age of inbreeding; gen = generation; HBD = homozygous by descent; Ry =

no. of generations threshold.
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Figure 6. Distribution of class of inbreeding, based on age for a sample of Holstein cows. Age class represent age of inbreeding.

effect. The identification of true deleterious partial re-
cessives remains a long-term challenge. To this point,
an important contribution to the understanding of the
basic mechanisms of inbreeding depression and hetero-
sis in the dairy population will be made by the growing
number of crossbred individuals that are currently be-
ing genotyped. In the short term, measures of overall
inbreeding more closely related to the overall recessive

Table 3. Regression coefficients for a 1% increase in genomic
homozygous-by-descent inbreeding classes for generations 1 to 4 and
4to 8

Partial inbreeding
regression coefficient

Generations Generations

Trait 1-4 4-8
Milk (Ib) —118.3%* —78.3%*
Fat (Ib) _q.qxx —3.82%%
Protein (1b) —3.38% —2.60%
Productive life (mo) —0.83* —0.32%
Daughter pregnancy rate —0.14% —0.04
SCS 0.003 0.002

¥5p < 0.01; % P < 0.05.

Journal of Dairy Science Vol. 103 No. 6, 2020

load could be used, either through the use of ROH or
age-related partial inbreeding coefficients.
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