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ABSTRACT

The rate at which new traits are being developed is
increasing. leading to an expanding number of evalua-
tions provided to dairy producers, especially for func-
tional traits. This review will discuss the development
and implementation of genetic evaluations for direct
health traits in the United States, as well as potential
future developments. Beginning in April 2018, routine
official genomic evaluations for 6 direct health traits
in Holsteins were made available to US producers
from the Council on Dairy Cattle Breeding (Bowie,
MD). Traits include resistance to milk fever, displaced
abomasum, ketosis, clinical mastitis, metritis, and
retained placenta. These health traits were included
in net merit indices beginning in August 2018, with
a total weight of approximately 2%. Previously, im-
provement of cow health was primarily made through
changes to management practices or genetic selection
on indicator traits, such as somatic cell score, produc-
tive life, or livability. Widespread genomic testing now
allows for accelerated improvement of traits with low
heritabilities such as health; however, phenotypes re-
main essential to the success of genomic evaluations.
Establishment and maintenance of data pipelines is a
critical component of health trait evaluations, as well
as appropriate data quality control standards. Data
standardization is a necessary process when multiple
data sources are involved. Model refinement continues,
including implementation of variance adjustments be-
ginning with the April 2019 evaluation. Mastitis evalu-
ations are submitted to Interbull along with somatic
cell score for international validation and evaluation
of udder health. Additional areas of research include
evaluation of other breeds for direct health traits, use
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of multiple-trait models, and evaluations for additional
functional traits such as calf health and feed efficiency.
Future developments will require new and continued
cooperation among numerous industry stakeholders.
There is more information available than ever before
with which to make better selection decisions; however,
this also makes it increasingly important to provide ac-
curate and unbiased information.

Key words: genetic parameter, genomic evaluation,
health trait

INTRODUCTION

The dairy industry has been very successful at im-
proving production, achieving more than a 5-fold in-
crease in milk yield since the beginning of the 20th
century. Through both improved management and ad-
vancing genetic selection strategies, the average dairy
cow today produces over 10,000 kg of milk per lactation
(USDA-NASS, 2018). Previous emphasis on production
allowed an antagonistic genetic relationship between
production and health to become increasingly apparent
(e.g., Pryce et al., 1998; Rauw et al., 1998). Shifts in
the dairy industry toward larger herd sizes have em-
phasized the importance of cows with strong resistance
to diseases. Concurrently, consumer interest in animal
welfare, as well as societal impacts (e.g., antibiotic us-
age) has grown (Boichard and Brochard, 2012).

Improvement of cow health can be achieved through
several approaches. Management can be improved to
provide cows with the best possible environment. Nutri-
tion can be optimized to mitigate metabolic disorders.
Unlike changes to management or nutrition, genetic im-
provement is appealing because its gains are cumulative
and permanent. Low heritability and lack of centralized
records, however, have previously precluded genetic
evaluations for direct health traits in the United States.

EARLY DEVELOPMENT

Genetic improvement of disease resistance in dairy
cattle has been an area of research for several decades.
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For more than 50 yr, researchers have described the
genetic variation of disease resistance among animals
(e.g., Hutt, 1958). Genetic improvement relies on the
collection of phenotypic data, which must accumulate
over many years, whether the data are collected on
paper or electronically, and requires a long-term com-
mitment to the program. Several European countries
implemented such recording systems for health traits
in the 1970s and 1980s, allowing the development and
implementation of genetic evaluation for direct health
traits. For example, Norway and Denmark have had
health recording systems in place for approximately
50 yr (Frandsen, 2013; Heringstad and Osteras, 2013),
whereas official health recording began in Finland and
Sweden in 1982 and 1984, respectively (Emanuelson,
2013). In the United States, there were calls for a uni-
fied health recording system over 35 yr ago (e.g., Pond
et al., 1982; Wiggans, 1994); however, not much prog-
ress was made except at the research level.

In more recent years, many countries have recognized
the Importance of recording health data and have
implemented evaluations. Austria developed a health
monitoring system beginning in 2006, with these data
included in breeding programs since 2011 (Egger-Dan-
ner et al., 2013). Development of a system to collect
common health events in Canada was started in 2007
(Kelton and Hand, 2013). Genetic evaluation of clini-
cal mastitis was initiated in 2014 in Canada (Koeck et
al., 2012b). Evaluations for metabolic diseases and hoof
health have since followed (Koeck et al., 2015; Malchio-
di et al., 2017). France has evaluated clinical mastitis
since 2010 (Govignon-Gion et al., 2012). In Australia,
clinical observations of disease are being collected from
genomic information nucleus herds to develop national
health breeding values (Abdelsayed et al., 2017; Pryce
et al., 2018).

In 1994, more progress toward genetic improvement
of health in the United States was initiated through the
use of indirect selection and indicator traits. Somatic
cell score and productive life (PL) were combined with
vield traits into a total net merit selection index (INM$;
VanRaden and Wiggans, 1995). Somatic cell score was
incorporated to reduce the labor and health costs asso-
ciated with clinical mastitis (VanRaden, 2017). Produc-
tive life provides an indirect indicator of overall health
by estimating the length of time a cow remains in the
milking herd, a measurement that can be affected by,
among other factors, the health of the cow (VanRaden,
2017). These traits have typically been recorded rou-
tinely through the DHI system for decades, resulting
in a large amount of data available to use for genetic
evaluation. Improved resistance to health events has
been accomplished as a result of selecting to improve
indicator traits such as SCS and PL.
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The availability of data on indicator traits for health
should not understate the importance of recording di-
rect health traits. Additional genetic progress is expect-
ed from direct selection for resistance to health events.
Countries with mandatory recording of health events
have demonstrated that genetic improvement of health
traits is feasible, while also continuing to improve pro-
duction efficiency (e.g., Heringstad et al., 2003; Phil-
ipsson and Lindhe, 2003). Many national evaluations
(e.g., Canada, France), including those in the United
States, rely on health events voluntarily reported by
producers. In addition to genetic evaluation, health
records provide producers with an indication of health
status of the herd and present aspects of management
that could be improved. More broadly. thorough health
event reporting on a national or larger level can be used
for benchmarking and identifying current and future
areas of concern.

Clearly, one limitation in the development of direct
genetic measures for health traits in the United States
has been the lack of a centralized system to collect
health data at a national level. Researchers at the
University of Wisconsin demonstrated that producer-
recorded health event data were a viable source of
phenotypes for genetic evaluation if the data could be
collected into a national data set (Zwald et al., 2004).
In an effort to advance the development of health evalu-
ations, the Animal Improvement Program Laboratory
(now the Animal Genomics and Improvement Labora-
tory, AGIL; Beltsville, MD), with cooperation from
industry partners and veterinary experts, developed
a standardized health record in 2008 (Format 6; Cole
et al., 2008). It was created to facilitate health and
management data collection for research based on data
available from on-farm computer systems (Cole et al.,
2008). Special care was taken to avoid reference to the
treatment of health events in response to industry con-
cerns. This is in contrast to protocols in some European
countries where health events are collected through the
reporting of treatments administered by veterinarians
(e.g., Heringstad and Osteras, 2013). Format 6 was
designed to be easily extensible to accommodate the
collection of new traits. It was also developed to be
compatible with the lactation record (Format 4) and
reproductive record (Format 5) that were already in use
at the time. Since its introduction, Format 6 has under-
gone several revisions to clarify and improve collection
of health data, with the latest revision in 2017. The
current version is available at https://redmine.uscdch
.com/projects/cdch-customer-service/wiki/Format_6.

Format 6 currently includes 20 health event codes
that cover clinical mastitis, reproductive problems,
metabolic disorders, and injuries, as well as 4 manage-
ment codes, including body condition score, locomo-
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tion score, temperament, and milking speed. The first
100 bytes of a record are designed to follow the same
structure as other data formats used by the Council
on Dairy Cattle Breeding (CDCB; Bowie, MD) and
include such information as animal, sire, and dam iden-
tification, herd identification number, and calving date.
Following this. each record can include up to 20 indi-
vidual segments, each representing a reported health
event. Each segment includes the standardized health
acronym, the date of the health event, and specific de-
tails related to the type of event.

No rules or regulations mandate that producers in
the United States report health event incidences at
a national level. Despite this, previous research has
demonstrated that genetic selection for resistance to
common health events is feasible using voluntarily pro-
vided data from producers (e.g., Zwald et al., 2004;
Parker Gaddis et al., 2012). Several companies have
developed proprietary genetic evaluations for health
traits based on producer-recorded data (e.g., Vuka-
sinovic et al., 2017; Gonzalez-Pena et al., 2019). To
alleviate producer concerns of a government agency
storing health data and to serve as a source of indepen-
dent evaluations, CDCB developed and implemented
a pipeline for the genetic and genomic evaluation of 6
common health event traits in Holsteins: hypocalcemia
or milk fever (MFEV), displaced abomasum (DA),
ketosis (KETO), clinical mastitis (MAST), metritis
(METR), and retained placenta (RETP). These
evaluations are based on producer-recorded data col-
lected on farm. This effort also included the estimation
of economic weights for the 6 health traits, as well as
incorporating these traits into current selection indices.

AVAILABLE DATA

The data pipeline through which health data are cur-
rently collected is based on the DHI system. Producer-
recorded health event data are collected from on-farm
management systems. This information is submitted
to 1 of 4 Dairy Records Processing Centers (DRPC)
in the United States. The DRPC are responsible for
standardizing the health event data that a producer re-
ports to the appropriate acronyms as defined in Format
6. Although Format 6 has been available since 2008,
industry-wide use did not occur until recently. Previous
research resulted in the development of an extensive
cross-reference dictionary for the acronyms most com-
monly reported by producers (Cole et al., 2006; Parker
Gaddis et al., 2012). Cross-reference information for
the 6 health events was provided to each DRPC to aid
in the development of their own cross-reference list that
is customized to match their customers’ recording prac-
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tices. Each DRPC developed their own cross-reference
dictionary assigning standardized acronyms based on
the acronym and details provided by producers either
independently or in collaboration with CDCDB. For ex-
ample, the producer-reported acronym of “RP” would
be converted to “RETP” for retained placenta. It is
imperative that those involved in collecting and pro-
cessing these data continue to cooperate and monitor
the data to ensure capture of all usable data.

Each DRPC routinely submits Format 6 health re-
cords to CDCB, which began in 2017. Initial editing
is performed before inclusion in the national dairy da-
tabase. Examples of these editing checks include date
plausibility (e.g., health event date not before animal’s
birthdate); identification checks for the animal, sire, and
dam; herd of the animal matches that already in the
database, among many other criteria. A record passing
all general editing checks is loaded into the national
dairy database. Otherwise, a specific error is reported
and that information is returned to the DRPC that
submitted the record. Successful submission of health
records is incentivized through remuneration of DRPCs
for the number of usable records in the evaluation.
Health data contributions are also rewarded through
discounted genomic nomination fees (Council on Dairy
Cattle Breeding, 2019).

Data must pass additional editing constraints to be
used as phenotypic data for genetic evaluations, simi-
lar to those described in Parker Gaddis et al. (2012).
Although Format 6 accepts 24 different acronyms,
evaluations are only currently performed for the 6 most
common health events. Current editing constraints to
be included for genetic evaluations specify that the
record must be from a US Holstein animal with known
sire in parities 1 through 5. Events are restricted to
occurring within a specified timeframe after calving:
MFEV events must occur within 30 d after calving;
DA and KETO events must occur within 60 d after
calving; MAST events must occur within 210 d after
calving: METR must occur within 90 d after calving:
and RETP must occur within 10 d after calving. Only
one event per lactation is included. All animals must
meet or exceed these trait-specific DIM requirements
before being included for genetic evaluation, regardless
of having a health event or being deemed healthy. If
an animal did not report the health event within the
specified time limit, she was deemed healthy for that
trait. The limits were determined by considering those
reported in the literature for similar studies (e.g., Her-
ingstad et al., 2005; Koeck et al., 2012a), as well as by
examining the data structure to ensure capture of the
majority of the data. Minimum and maximum incidence
constraints are applied on a herd-year basis to ensure
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Table 1. Summary statistics of health events available in the national dairy database as of August 2019

Mean incidence

Health event Records, no. Cows, no. Herds, no. rate, % Heritability, %
Milk fever 1,243,401 781,455 771 1.0 0.6
Displaced abomasum 1,970,038 1,131,736 1,130 1.6 1.1
Ketosis 1,440,048 846,264 820 34 1.2
Mastitis 2,615,870 1,495,923 1,660 9.3 3.1
Metritis 2,047,806 1,170,213 1,161 5.3 14
Retained placenta 2,344,718 1,358,684 1,302 2.7 1.0

(a) that a herd is reporting a specific health event, and
(b) that a herd is not using an event code to designate
management practices as opposed to an actual event,
respectively (e.g., many codes related to hoof care are
used to track management practices rather than health
events). Approximately 49% of the health events in the
database are not included as phenotypes for reasons
such as missing sire identification, outside parities 1 to
5, repeated event, or the herd did not supply sufficient
health records during that time. This is comparable
to other national evaluations using producer-recorded
data (e.g., Zwald et al., 2004; Koeck et al., 2012a).
Phenotypes include data since 1991; however, the ma-
jority of data (>85%) are since 2010. These data are
from approximately 2,000 herds throughout the United
States, representing approximately 16% of US herds on
DHI. Summary statistics including number of records,
number of animals, and number of herds are given
in Table 1 as of the most recent national tri-annual
evaluation (August 2019). Total number of records was
3,771,868, with the number of records for each specific
trait varying from 1,243,401 for MFEV to 2,615,870 for
MAST. Since the initial release of health evaluations
in April 2018, the number of phenotypic records used
for genetic evaluation has increased by over 1.1 million,
with additional records being added daily.

An incident of a health event is represented pheno-
typically with a score of 0, with contemporary cows
having no health event reported assumed to be healthy
and given a score of 100. Overall incidence rate for
each health event is provided in Table 1 and ranges
from 1.0% for MFEV to 9.3% for MAST. These val-
ues fall within an expected range compared with other
similar studies. Parker Gaddis et al. (2012) summarized
event incidences from numerous studies to compare
the calculated incidence rate with available data. The
incidence rates described herein (Table 1) fall within
these incidence ranges previously summarized. Ad-
ditional comparable studies using producer-recorded
health data have estimated similar incidence rates to
those reported herein. Neuenschwander et al. (2012)
reported incidences of 2.3, 4.0, 2.6, 9.7, 3.2, and 5.9%
for MFEV, DA, KETO, MAST, METR, and RETP,
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respectively. Abdelsayed et al. (2017) estimated an
incidence of 1.5% for metabolic disorders including
MFEV, KETO, and grass tetany; 9.0% for reproductive
disorders including RETP, METR, uterine infections,
cystic ovarian disease, vaginal cyst, and reproductive
tract trauma: and 16.1% for MAST. Higher estimates
were reported by Gernand et al. (2012), although this
may be attributable to the fact that the data were from
9 large herds as opposed to data on a national scale.
Incidence rates from a similar study also conducted in
the United States reported higher estimates for all com-
mon traits (KETO, MAST, METR, RETP) with the
exception of DA, which was comparable (Vukasinovic
et al., 2017). Despite this, there is always a concern of
under-reporting health events, coupled with inadequate
capture of data during processing. This can occur for
many reasons. Health events reported by a farm can
depend on the specific software used for on-farm man-
agement. Ease of reporting a specific type of event in
the software (e.g., if there is a predefined acronym)
may influence whether it is reported at all. Valid health
events can be missed at the DRPC level if the cross-
reference dictionary does not include an acronym used
by producers. Herd-specific practices can also affect
what data are recorded. Personnel training and staffing
changes can result in varied reporting consistency due
to different interpretations of symptoms (ICAR, 2019).
This will likely have an increasing impact as herds
continue to grow in size and require additional hired
staff. All of these influences can obscure the difference
between herds that have very few incidences of a health
event and herds that do not report a health event
consistently. This is minimized as best as possible by
implementing numerous levels of quality control, such
as the minimum and maximum incidence constraints
implemented by herd-year. It also requires that quality
control standards be re-evaluated regularly, especially
as more health data are being submitted.

GENETIC AND GENOMIC EVALUATION

Variance components for each health event were esti-
mated from univariate linear animal models imple-
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mented with ATIREMLF90 version 1.122 (Misztal et al.,
2002). The model included fixed effects of parity, year-
season, and overall mean and random effects of herd-
year (h), animal (a), permanent environment (p), and
residual (e). Season was designated as 4 categories:
winter (December, January, February), spring (March,
April, May), summer (June, July, August), and fall
(September, October, November). Heritability (h*) was

calculated as h? = 03/(02 + 0;21 + 012] + 03), where o

represents the variance. Heritability estimates on the
observed scale were 0.6, 1.1, 1.2, 3.1, 1.4, and 1.0% for
MFEV, DA, KETO, MAST, METR, and RETP, re-
spectively (Table 1). These estimates align well with
other estimates from the literature using linear models.
The aforementioned study by Abdelsayed et al. (2017)
reported heritabilities of 3, 1, and 0.2% for MAST, re-
productive disorders, and metabolic disorders, respec-
tively, among Australian Holsteins across all parities
using a linear animal model. Heritability estimates
from Canadian Holstein data were reported separately
for first- and later-parity animals using linear animal
models. Estimates among first-parity animals were
higher than those reported here; however, the later-
parity estimates were comparable (Jamrozik et al.,
2016). Heritability estimates from threshold models are
typically higher than those estimated with linear mod-
els, comparing heritabilities on the underlying scale to
those on the observed scale. Heritahilities estimated
using data from US animals with a threshold animal
model were 8.1, 5.9, 6.9, 5.9, and 7.3% for DA, KETO,
MAST, METR, and RETP, respectively (Vukasinovic
et al., 2017). Higher heritabilities using threshold mod-
els have also been reported by Neuenschwander et al.
(2012) and Gernand et al. (2012). These variance com-
ponent estimates are used in the calculation of tradi-
tional evaluations.

Traditional Evaluation

Traditional (pedigree-based) PTA are estimated
using a univariate BLUP repeatability animal model,
similarly to those used for routine national genetic
evaluations of other traits (VanRaden et al., 2014). The
model used for traditional evaluations includes fixed
effects of year-season, age at calving by parity, and a
regression on inbreeding. Random effects include herd-
year, permanent environment, additive genetic, and
residual. Estimated heritabilities described in the previ-
ous section were used, as there were not large changes
in the heritability estimates with the modifications to
the model. As of the August 2019 evaluations, there
were 82,678,411 pedigree records included. Estimated
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PTA are presented as percentage points of resistance
above or below the breed average, with positive values
being favorable. Average traditional reliabilities for
all animals range from 15.3% for MFEV to 23.4% for
MAST but reach values of 97% or greater depending
on the trait. These reliabilities are expectedly low and
comparable to others reported from pedigree-based ge-
netic evaluations (e.g., Koeck et al., 2015; Vukasinovic
et al., 2017).

Despite a threshold model being theoretically more
appropriate given the binary nature of these traits,
many previous studies using similar traits have con-
cluded that a linear model performs equally well (Carlén
et al., 2006; Koeck et al., 2010). Using a linear model
allowed for an animal model (as opposed to a sire or
sire-maternal grandsire model) to be easily fitted. An
animal model requires fewer assumptions (e.g., random
mating) and avoids problems with extreme categories
(Sorensen and Gianola, 2002; Koeck et al., 2010). A
threshold animal model can help adjust for differing
incidence rate but did not converge for these data. To
ensure stability of the health evaluations across time as
an animal accumulates health records, variance pre-ad-
justments were investigated for the health phenotypes.
Variances and observed scale heritabilities often differ
for categorical traits due to differences in incidence.
The methodology was analogous to that presented in
Wiggans and VanRaden (1991) and similar to that ap-
plied for livability (LIV) evaluations (a binary trait).
Phenotypes were preadjusted using calving-year groups,
parity number, and trait heritability. Heritability was
estimated for each trait overall, and for each parity 1
through 5. The adjustment applied was as follows:

"
YT nean all
mean mean

@, =100 — |y + (a: — lacyr
/ lacyr

mean

where z,4 is the adjusted incidence indicator, x is the
incidence indicator (0 = event; 100 = healthy or no
event), Yr., is the mean incidence calculated by 5-yr
groups, lacyr,,... is the mean incidence calculated by

parity by 5-yr groups, hZ; is the overall trait heritabil-

ity, and hp, is the parity-specific heritability. If there
are fewer than 3 yr in the most recent group, these
years are combined with the previous 5-yr group.
Results from the variance-adjusted data were com-
pared with previous official results (without any vari-
ance adjustment) as well as to evaluations from first
lactation only. The largest change was seen in MFEV
values, with a correlation of 0.79, whereas correlations
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between the adjusted and unadjusted evaluations for
all other traits ranged from 0.92 (METR and RETP)
to 0.98 (DA and KETO) among bulls with >70% reli-
ability born since 2000. The standard deviation of first-
lactation evaluations is expected to be about 5% less
than that of all lactations due to lower reliability, and
all traits with the exception of DA were closer to this
expectation with the applied variance adjustment. Ge-
netic trends were compared using correlations of PTA
with birth year to automatically adjust for differences
in standard deviation. For all traits, first-lactation
trends agreed with the trends using adjusted data more
closely than with the unadjusted data. For example,
the first-lactation trend of ketosis was 0.31, compared
with a trend of 0.30 in the adjusted data and 0.36 in the
unadjusted data. Given the favorable results indicating
that the variance-adjusted phenotypes performed het-
ter than those not using an adjustment. these variance
adjustments were applied to the CDCDB health evalua-
tions beginning in April 2019.

With limited data available compared with other
traits, the inclusion of foreign data from Interbull (Up-
psala, Sweden) can increase the reliability of health trait
evaluations. Evaluations for MAST were submitted
to Interbull to be included in multiple across-country
evaluation (MACE) following the implementation of
the variance adjustments. Mastitis is the only direct
health trait currently evaluated by Interbull, which,
along with SCS, makes up the udder health trait
group. Evaluation results using the variance-adjusted
data were submitted to and passed Interbull valida-
tion procedures in the January 2019 test run. This
also served as an additional independent test of the
performance of the variance adjustments. Beginning in
August 2019, MACE information is incorporated with
the CDCB MAST evaluations. Restrictions on the data
are put in place to ensure that foreign data are from
countries providing direct MAST data. This currently
includes Canada, Denmark, Finland. Sweden, France,
Belgium, Switzerland, and the Netherlands. Additional
restrictions are placed on breed (only Holstein cur-
rently evaluated), and bulls are excluded if the country
with the most daughters only sends SCS data. Average
reliability of voung animals increased 3.5 points follow-
ing the inclusion of Interbull data; however, this is also
affected by a concurrent 9% gain in domestic data for

MAST.

Genomic Evaluation

Genotypes used for genomic evaluations include the
79,294 SNP used in routine US genomic evaluations

by CDCB (Wiggans et al., 2019). These SNP were se-
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lected based on minor allele frequency, parent-progeny
conflicts, and call rate, as described in Wiggans et al.
(2016). The number of genotyped animals as of the
August 2019 evaluation was 2,725.350. Animals are
genotyped using various platforms; however, all animals
are imputed to 79,294 markers using Findhap version 3
(VanRaden et al., 2011).

Allele substitution effects are estimated from der-
egressed traditional PTA for the 79.294 SNP included
in the routine US genomic evaluations. An infinitesimal
model is used with heavy-tailed priors, where smaller
effects are regressed further toward zero and markers
with larger effects are regressed less to account for a
non-normal distribution of marker effects (VanRaden,
2008). Genomic PTA are calculated by combining 3
terms in an index: direct genomic prediction. parent
average computed from the subset of genotyped ances-
tors using traditional relationships, and parent average
(VanRaden et al., 2009). Evaluation statistics for each
health event for genotyped animals are included in
Table 2 (PTA) and Table 3 (reliability), grouped by sex
as well as age (“old” animals are considered those with
PTA reliability greater than parent average reliability).
Inclusion of genomic data increases average reliability
approximately 2- to 3-fold, depending on the trait. Av-
erage genomic reliability ranges from 44% for MFEV
up to 67% for MAST in young bulls. In old bulls, aver-
age genomic reliability ranges from 50% for MFEV up
to 77% for MAST. Reliability gains compared with tra-
ditional reliability are largest for young bulls without
progeny. Reliability estimates are largely dependent on
the size of the reference population (Egger-Danner et
al., 2015). The reliabilities reported herein are higher
than those reported from a much smaller reference
population (Abdelsayed et al., 2017). Average genomic
reliabilities for MAST ranged from 23 to 33% depend-
ing on the populations (bulls, bulls with more than 5
daughters, or cows). A combined trait of reproductive
disorders had average genomic reliability ranging from
9 to 15% (Abdelsayed et al., 2017). A previous study
in the United States reported genomic reliabilities
among various groups of animals (Vukasinovic et al.,
2017). Average reliability was approximately 50% for
all health traits examined among young genotyped and
pedigreed females.

ECONOMIC INDEX

Two recent studies were used to estimate direct treat-
ment costs for each health event. Liang et al. (2017)
estimated direct veterinary and treatment costs, pro-
ducer labor, milk loss, culling cost, extended days open,
on-farm death, and discarded milk costs for health dis-
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Table 2. Summary statistics of health evaluations for genotyped animals including pedigree-based and genomic PTA

Pedigree-based Genomic
Group' Health event® Mean Minimum Maximum Mean Minimum Maximum
Males, old MFEV —0.09 —2.77 0.62 —0.07 —1.96 0.64
DA 0.06 —3.68 1.70 0.05 —3.75 1.78
KETO 0.09 —3.13 1.83 0.09 —3.35 1.70
MAST —0.19 —12.27 5.77 —-0.21 —7.43 5.53
METR 0.30 —3.84 3.18 0.30 —3.86 2.53
RETP 0.05 —2.36 2.25 0.04 —2.31 2.55
Males, young MFEV —0.15 —1.39 0.38 —0.15 —1.07 0.56
DA 0.26 —2.88 1.30 0.32 —2.63 1.62
KETO 0.30 —2.16 1.26 0.36 —2.36 1.64
MAST 0.05 —7.89 3.91 0.18 —6.57 5.82
METR 0.63 —2.56 211 0.73 —3.19 2.66
RETP 0.11 —1.24 0.87 0.11 —1.42 1.13
Females, old MFEV —0.11 —2.59 0.36 —0.11 —1.74 0.50
DA 0.26 —2.49 1.31 0.25 —2.77 1.52
KETO 0.23 —2.61 1.36 0.26 —2.52 1.57
MAST 0.22 —7.61 4.94 0.27 —6.00 6.43
METR 0.57 —3.33 2.05 0.64 —3.78 2.75
RETP 0.12 —1.56 0.99 0.13 —1.59 1.11
Females, young MFEV —0.11 —2.08 0.38 —0.13 —1.61 0.58
DA 0.24 —2.93 141 0.28 —3.04 1.79
KETO 0.24 —2.30 1.34 0.28 —2.63 1.71
MAST 0.06 —7.89 4.21 0.08 —6.70 5.95
METR 0.54 —2.80 2.30 0.67 —2.88 2.71
RETP 0.09 —1.67 0.92 0.11 —1.80 1.25

'Distinction between “old” and “young” animals determined by comparison of PTA reliability and parent average reliability. Old animals are
those with PTA reliability greater than parent average reliability.

MFEV = milk fever; DA = displaced abomasum; KETO = ketosis; MAST = mastitis; METR = metritis; RETP = retained placenta.

Table 3. Summary statistics of health evaluations for genotyped animals including pedigree-based and genomic reliability

Pedigree-based Genomic
Croup Health event?® Mean Minimum Maximum Mean Minimum Maximum
Males, old MFEV 27.5 0.1 96.8 49.6 35.7 96.8
DA 33.7 0.3 98.5 58.6 35.7 98.8
KETO 32.3 0.1 98.3 56.8 35.7 98.7
MAST 54.7 1.2 99.6 76.6 36.3 99.7
METR 354 0.4 98.9 61.4 35.7 99.2
RETP 343 0.2 98.7 59.9 35.7 99.0
Males, young MFEV 16.9 0 41.2 43.6 31.0 56.9
DA 20.3 0 44.2 53.1 31.5 64.3
KETO 19.8 0 43.7 51.6 314 63.2
MAST 25.3 0 85.0 67.3 35.3 87.6
METR 21.0 0 44.8 55.9 34.5 66.5
RETP 21.0 0 44.4 54.7 32.7 65.5
Females, old MFEV 19.9 0 70.9 44.2 2.4 79.4
DA 24.4 0 80.0 54.5 2.6 86.1
KETO 23.8 0 78.3 52.9 24 84.8
MAST 30.5 0 87.3 68.2 12.5 92.0
METR 25.6 0 81.8 57.3 4.5 87.4
RETP 25.2 0 80.5 56.0 4.2 86.4
Females, young MFEV 14.6 0 41.7 41.9 1.6 57.3
DA 17.8 0 44.2 51.1 2.0 64.3
KETO 17.3 0 43.8 49.5 2.0 63.3
MAST 22.1 0 46.6 65.8 12.2 76.2
METR 18.5 0 44.8 54.1 2.5 66.2
RETP 18.4 0 45.3 52.7 2.5 65.3

'Distinction between “old” and “young” animals determined by comparison of PTA reliability and parent average reliability. Old animals are
those with PTA reliability greater than parent average reliability.

MFEV = milk fever; DA = displaced abomasum; KETO = ketosis; MAST = mastitis; METR = metritis; RETP = retained placenta.
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Table 4. Economic estimates of each health event and emphasis in Net Merit § (NMS$)

Average direct

Abnormal test-day

Total cost used Emphasis in health Emphasis in

Health event cost,' § adjustment,” $ in NM$, § index (HTHS), % NMS$, %
Milk fever 38 —4 34 3 0.07
Displaced abomasum 178 +19 197 39 0.90
Ketosis 28 +0 28 5 0.12
Mastitis 72 +3 75 23 0.53
Metritis 105 +7 112 20 0.46
Retained placenta 64 +4 68 11 0.25

'Average direct treatment costs from Liang et al. (2017) and Donnelly (2017).
“Estimated adjustment to direct cost resulting from abnormal test-day adjustments.

orders from veterinary and producer survey responses.
Donnelly (2017) collected health treatment costs from
8 high-producing herds located in Minnesota. Table 4
includes the average of the estimated direct cost from
each study. The use of direct treatment costs avoids
including costs that are already accounted for in NMS$
calculations, such as correlated declines in production,
fertility, and longevity.

An additional analysis was conducted to evaluate the
impact of test-day production adjustments to ensure
that yield losses associated with health events were
fully accounted for in the economic estimates. For rou-
tine evaluations, test-day vields that are either <60%
or >150% of predicted test-day yield are designated as
abnormal and are adjusted to these limits (Wiggans
et al., 2003). Farmers may also designate animals as
being sick on a test day, which may result in the record
not being used in the computation of lactation records,
based on the International Committee for Animal Re-
cording (ICAR) guidelines for missing results and ab-
normal intervals (ICAR, 2017). Milk, fat, and protein
lactation yields were analyzed with abnormal and sick
test-day records included at their original values com-
pared with yields with editing and adjustments applied
for a random subset of animals.

Analyzing vield traits with and without these routine
adjustments indicated that most health traits resulted
in a 1-kg difference for fat and a 0.5-kg difference for
protein. Assuming a value per lactation of $1.23 for
fat and $1.32 for protein resulted in approximately $4
added to the direct health cost per case to account for
unadjusted yield (Parker Gaddis et al., 2018). The trait
affected most by this adjustment was DA, with a differ-
ence between adjusted and unadjusted yields of 2.7 kg
of fat and 4 kg of protein. This resulted in $19 added
to the direct cost for DA. The larger impact estimated
for DA is likely due to the severity of the event, often
requiring surgery, making it more likely to be coded
as sick or abnormal on test day (Parker Gaddis et al.,
2018).
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After accounting for the above adjustments, average
cost per case of each health event was $28 for KETO,
$38 for MFEV, $64 for RETP, $72 for MAST, $105 for
METR, and $178 for DA (Table 4). These values were
used when incorporating the 6 health trait evaluations
into NM$ beginning in August 2018 through a health
traits sub-index (HTHS$). Overall, HTH$ receives
2.3% emphasis of NMS$, with similar emphasis in the
other merit indices reported by CDCB. The correlation
between the revised NM$ formula released in August
2018 and the previous NM$ (2017) was 0.994 for recent
Holstein bulls (VanRaden et al., 2018b). The largest
change was seen in SCS, due to the inclusion of direct
MAST. Value per lactation of PTA SCS previously
included $24 for direct premiums and $20 for indirect
costs of mastitis, including extra labor, treatment, dis-
carded milk, and lost milk shipments due to antibiotic
residue. The updated indirect cost for mastitis is $3.70
compared with the previous $20 assumed. This resulted
in PTA SCS receiving —3.5% emphasis in the updated
NMS$ formula compared with the previous emphasis
of —6.5% (VanRaden et al., 2018b). Percent relative
emphasis for net merit traits are shown in Table 5 for
the 2017 revision (before the addition of health traits)
and the current (2018) revision.

FUTURE DEVELOPMENTS IN US NATIONAL
GENETIC EVALUATIONS

Health Evaluations for Additional Breeds

Jersey is the second most prevalent dairy breed in
the United States; however, CDCB health evaluations
are currently released only for Holsteins. An increasing
number of Jersey health records have been submitted
by the DRPC to CDCB, with the number of records
more than doubling from December 2018 to June 2019.
Recent research on Jersey health evaluations (Jensen
et al., 2019) found that the number of available records
ranged from 39.716 for KETO to 97,507 for MAST. Av-
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Table 5. Net merit (NM) weights before (2017 revision) and including
health traits (2018 revision)

Relative emphasis, %

Trait NMS$ 2017 NMS$ 2018
Milk -1 -1
Fat 24 27
Protein 18 17
Productive life 13 12
SCS -7 —4
BW composite —6 -5
Udder composite 7 7
Feet/legs composite 3 3
Daughter pregnancy rate 7 7
Calving ability sub-index 5 5
Heifer conception rate 1 1
Cow conception rate 2 2
Livability 7 7
Health sub-index NA' 2

'Not applicable.

erage genomic reliability in this study ranged from 29
to 35%. depending on the trait, which is approximately
15 points lower than the average reliability in Holsteins.
As more Jersey health data are collected, Jersey reli-
abilities are expected to increase. Through continued
monitoring of the data and cooperation among those
involved in its collection and processing, the avail-
able number of records has increased since that study,
and now ranges from 77,025 for KETO to 158,556 for
MAST. Health evaluations for Jerseys are currently be-
ing tested with expected publication in April 2020.

Multiple-Trait Evaluations

Multiple-trait models could be implemented for the
health traits to improve evaluations. There are sig-
nificant correlations among the health traits. as well as
between the health traits and other routinely evaluated
traits (Neuenschwander et al., 2012; Parker Gaddis et
al., 2014). Table 6 provides Pearson (product-moment)
correlations between PTA for the 6 health traits and
PTA for other traits included in NM$. Notable signifi-

cant PTA correlations were estimated with PL and LIV,
SCS, and reproductive traits. There are also significant
(P < 0.05) PTA correlations between biologically rel-
evant health traits such as RETP and METR (0.60) or
DA and KETO (0.68). Additional significant (P < 0.05)
PTA correlations were identified between METR and
MAST (0.19), KETO and METR (0.43), and METR
and DA (0.32). Using a multiple-trait model, especially
when one trait has a large amount of historical data,
may improve the evaluations (e.g., Koeck et al., 2015).
One example of this would be evaluating MAST and
SCS in a multiple-trait model. The correlation between
PTA MAST and PTA SCS is approximately —0.78,
and SCS has a much larger number of records. Another
correlated trait that is commonly included in MAST
evaluations is udder depth (e.g., Jamrozik et al., 2013),
which was found to have a significant correlation with
PTA MAST of approximately 0.33 in our data. Other
indicator traits that are easier to collect or less am-
biguous to define could also be incorporated with a
multiple-trait model; for example, BHB could be used
as an indicator of ketosis or fat-to-protein ratio as an
indication of energy balance (e.g., Koeck et al., 2014).
Further work includes analysis of multiple-trait models,
as the benefits of using multiple-trait models with the
CDCB health traits need to be quantified.

New Trait Development

Functional trait development includes more than the
6 direct health traits recently released. Cow livability
was first introduced in August 2016; however, heifer
mortality also has a significant effect on producer prof-
itability and management. A recent estimate of pre-
weaning heifer mortality was 6% (USDA, 2018). The
vast majority of these deaths result from either diges-
tive disease or respiratory problems (USDA, 2018). In
2015, the estimated cost of dairy calf deaths was $327.3
million (USDA, 2017). Heritability of heifer livability
was previously estimated to be 0.4% (VanRaden et
al., 2016), and the number of heifer records currently

Table 6. Pearson (product-moment) correlations between PTA of health traits and PTA of other traits' included in Net Merit § (NM$)

Health event Protein PL LIV SCS DPR CCR HCR
Milk fever —0.20% —0.08 0.09 —0.01 —0.02 —0.02 0.02

Displaced abomasum 0.15% 0.41% 0.41%* —0.13 0.28* 0.28* 0.12

Ketosis 0.25% 0.41% 0.35% —0.22% 0.38* 0.34* 0.20%*
Mastitis 0.06* 0.54%* 0.42% —0.78% 0.36* 0.33* 0.16*
Metritis 0.24% 0.46* 0.33% —0.21% 0.43* 0.43* 0.28%*
Retained placenta 0.01 0.22%* 0.17* —0.16* 0.20* 0.19* 0.18*

'PL = productive life; LTV = livability; DPR = daughter pregnancy rate; CCR = cow conception rate; HCR = heifer conception rate.

*P < 0.05.
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available has grown to over 4.4 million. Recent research
by AGIL scientists has shown that genetic evaluation
of heifer livability is feasible. Despite its low heritabil-
ity, the significant economic impact of heifer livability
makes it a trait likely to be implemented in the future.

Heifer livability utilizes data that is already routinely
collected through the DHI system. Implementation of
other new traits, such as feed efficiency, requires the
development of new data pipelines. Implementation
of genetic evaluations for feed efficiency has been pre-
cluded by the difficulty and expense in collecting the
data. Feed costs are the largest single expense of a dairy
producer, and heritability estimates are low to mod-
erate (0.14; VanRaden et al., 2018a). Feed efficiency
could receive up to 16% emphasis if included in NMS.
Work is ongoing at multiple locations across the United
States to continue data collection and store these data
in the national dairy database to implement genetic
evaluations for feed efficiency. Despite the best efforts
at a national level, traits such as feed efficiency that
have extremely limited data, likely require collabora-
tion on an international level. Development of new data
pipelines must consider numerous aspects including
trait definition, quality control, and standardization to
ensure the quality of genetic evaluations produced from
this new data.

CONCLUSIONS

Selection for a robust dairy cow that has high pro-
duction, becomes pregnant easily, produces a healthy
calf, and resists succumbing to disease is most desir-
able and profitable. Development of genetic evalua-
tions for direct health traits has spanned many years
and the methodologies are continually heing improved
upon. Data pipelines had to be developed before the
implementation of health evaluations, and the main-
tenance of pipelines is critical for the continuation of
data flow. The US dairy industry is developing more
functional traits for genetic evaluation. Some of these
new traits rely on data collected through traditional
means, whereas others require the creation of new data
pipelines.
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