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Summary

Genetic evaluation on residual feed intake (RFI) often takes 2 stages. Combining these 2 modeling stages leads
to one-step linear regression, eliminating the need to estimate the residuals as the RFI phenotypes specifically.
However, fitting phenotypes as regressor variables in a standard linear regression is criticized because
phenotypes are subject to measurement errors. Multiple-trait models have been proposed, which give the
genetic values of RFl through a follow-up partial regression procedure. By rearranging the linear regression
equation, we came across an alternative, causal RFl interpretation by phenotype recursiveness between DMI
and energy sinks. In this technical note, we propose a Bayesian recursive structural equation model (RSEM) for
directly evaluating RFI, extending its analytical capacity to multiple-trait analysis.

Highlights
« The model postulates RFl as resulting from phenotypic recursive effects from energy sinks to DMI.
+ It predicts RFl genetic values and estimates genetic parameters simultaneously.
+  Asimplified algorithm is proposed to sample model parameters via Marko chain Monte Carlo.
+  The model extends naturally to deal with heterozygous relationships between DMI and energy sinks.
+  Modeling simultaneous effects between energy sinks and DMl is possible, subject to model identifiability.
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Abstract: There has been increasing interest in residual feed intake (RFT) as a measure of net feed efficiency in dairy cattle. Residual feed
intake phenotypes are obtained as residuals from linear regression encompassing relevant factors (i.e., energy sinks) to account for body
tissue mobilization. By rearranging the single-trait linear regression, we showed a causal RFI interpretation underlying the linear regres-
sion for RFL It postulates recursive effects in energy allocation from energy sinks on dry matter intake, but the feedback or simultaneous
effects are nonexistent. A Bayesian recursive structural equation model was proposed tor directly predicting RFI and energy sinks and
estimating relevant genetic parameters simultaneously. A simplified Markov chain Monte Carlo algorithm was described. The recursive

model is asymptotically equivalent to one-step linear regression for RFI, yet extends the analytical capacity to multiple-trait analysis.

Residual feed intake was initially proposed by Koch et al. (1963)
as the residuals from linear regression (LR) of feed intake on
various energy sinks. It represents a resource allocation theory,
which partitions feed intake into the feed intake expected for the
given production level and a residual portion (Herd, 2009). Genetic
evaluation on RFT often takes 2 stages (Berry and Crowley, 2013).
In the first stage, DMI is taken to be a linear function of variables
(i.e., energy sinks) to account for body tissue mobilization. In dairy
cattle, energy sinks often include metabolic body weight (MBW),
milk net energy (MILKNE), and changes in BW (ABW) (e.g.,
Pryce et al., 2015; Tempelman et al., 2015; Lovendahl et al., 2018;
Islam et al.. 2020). In the second stage model, the computed RFI
phenotypes are fitted by a mixed-effects model to estimate RFI
genetic values and relevant genetic parameters. Combining these 2
modeling stages leads to one-step LR for RFI (e.g., Tempelman et
al., 2015; Lovendahl et al., 2018), eliminating the need to estimate
the residuals as RFI phenotypes specifically. Fitting phenotypes as
regressor variables in LR has been criticized (Lu et al., 2015) be-
cause standard regression models assume that regressor variables
have been measured precisely. In reality, however, phenotypes are
subject to measurement errors. Multiple-trait models have been
proposed that obtain RFI genetic values indirectly through follow-
up partial regression (Kennedy et al., 1993; Luetal., 2015; Islam et
al., 2020; Tempelman and Lu, 2020). With various methods avail-
able, the biological implications for the computed RFI remain to be
exploited (Martin et al., 2021).

By rearranging the LR equation, we came across an alternative,
causal interpretation of RFI by phenotype recursiveness between
DMI and energy sinks. Consider a single animal, say i. Let y;; be
a variable for DMI phenotypes and let y;, ..., Vs be variables rep-
resenting the phenotypes for k¥ — 1 energy sinks, all measured on
this animal. A simple energy model includes only energy sinks as
fixed effects plus the residual (r;) as a RFI phenotype (Lovendahl
etal., 2018):

k
0= D b (1]

where A, quant1ﬁes the effect of energy sink j on DMI. The energy
sink model may include additional covariates or factors (Pryce et
al., 2015; Tempelman et al.. 2015). Then, the residual is fitted by a
mixed-effects model:
f= y HXBy +za; ey, (2]
where y, is the overall mean, B, is a vector of fixed effects, a, is
a vector of random animal additive genetic values, x;; and z;, are
the corresponding incidence vectors for animal 7, and e;; is an error
term. We did not consider random environmental effects in model
[2] but they can be included similarly. Combining equations [1]

and [2], and moving the energy sink phenotypes to the left-hand
side of the equation, leads to

k
Y — Zt M =

Note that in [3], y;, is a phenotype for DMI, but the fixed and ran-
dom effects (i.e., B; and a,) pertain to the system phenotype,

Yy — Zf: 2)\.”%, which is RFI. This feature contrasts that of a
multiple-trait mixed eftects model in which the model parameters
belong to DMI and energy sinks. Hence, the recursive model can
directly estimate RFI genetic values and genetic parameters with-
out taking follow-up partial regression or reparameterization.

Next, each energy sink trait, say j, is described similarly by a
mixed-effects model:

m +xyby +zha; + ey, (3]

Yy +x D —i—zzja] + ey, (4]

'Council on Dairy Cattle Breeding, Bowie, MD 20716, 2Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706, 3Department of
Animal and Food Sciences, University of Delaware, Newark 19716, “USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory,
Beltsville, MD 20705-2350. *Corresponding author: nick. wu@uscdcb.com. © 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the
American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Received January

15,2021. Accepted July 18,2021.



Wu et al. | Alternative interpretation of residual feed intake 372

By stacking equation [3] with the mixed-effects models [4] for the
energy sink traits and rearranging incidence matrices and fixed and
random vectors (including the residual vector), we obtain the fol-
lowing recursive structural equation model (RSEM) for individual
i:

Ay, =p+XB+Za+e, [5]

r !

Vo= (W Yo o) om=(m om o )
e, = (811 €9 eik)’, and B and a are vectors of appropriate
lengths containing the fixed and random effects, respectively. The
vectors of fixed and random effects are resorted for each effect by
traits within individuals, and the incidence vectors are set up ac-
cordingly. Let the incidence vectors of fixed effects be the same
between traits for each animal. Thatis, x;, =... = X,; = X;, where
x;; is an incidence vector linking fixed effects to the jth phenotype
and x; is the common incidence vector. Then, X; = x; ® I, where 1
is a k x k identity matrix. Similarly, we have Z; =z, ® I. Finally, the
structural matrix (A) is defined as follows:

where

1 AIZ A]k
0 1 0

A= . [6]
0 0 1

This recursive model belongs to the broad category of recursive
and feedback systems for describing the phenotypic relationships
between diseases and production in animal breeding (Gianola and
Sorensen, 2004; Wu et al., 2007, 2008). Jamrozik et al. (2017) ap-
plied recursive modeling to analyze ratio traits (e.g., ¥,/v,), where
¥y 1s taken to be the baseline trait with an assumed recursive effect
on y,. Lu et al. (2015) applied a modified Cholesky decomposition
of covariance matrix between DMI and 2 energy sinks. The repa-
rameterization implied fully recursive effects from energy sinks
and DMI. Neverthelesss, they did not follow structural equation
modeling but retained a multiple-trait mixed-effects model and
obtained partial regression coefficients from estimated covariance
matrices.

The Bayesian implementation of the recursive model for RFI
follows Gianola and Sorensen (2004) and Wu et al. (2007, 2010).
A simplified algorithm is described below. A detailed description is
available at https://redmine.uscdcb.com/documents/259). The RFI

E ()\|else) =
PR AN

Z?: YisYiz

T
i Yi2¥iz

no2 2, -2
Zz‘:lyi:’ to,T

Z 1:: YirYia Z :: YirYis

noo9 2_—2
Zi:l ik +UE]T

k
phenotypes (i.e., Yy — tz?Altyit) are uncorrelated with the phe-

notypes of energy sinks (Kennedy et al., 1993). According to the
path theory, a zero phenotypic correlation (r,) between RFI and an
energy sink (indexed by j, for j = 2, ..., k) implies either (1)

(1 — hRFI) (1 — hj) Termre; — thFIhjraRij or (2)r, =0 and

CRFIE)

r = 0,, where # is the square root of heritability, and

ARFIe; ” q Y. GRRFIe;

and Toppre; AT€ the genetic and residual correlations, respectively,
Ty

between RFT and energy sink j, assuming a total determination by
these 2 components. The former relationship in (1) is a strong as-
sumption, which states that genetic and residual correlations be-
tween RFI and energy sinks were highly coordinated and they do
not necessarily equal zero. We took the latter approach., option (2),
by forcing the genetic (G) and residual (R) covariance between
RFI and energy sinks to be zeros, because we intended to have RFI
as a measure of net feed efficiency, independent of energy sinks.
That is,

2 2
o 0 0 7, 0 0
0 o2 T 0 o2
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The genetic and residual covariance matrices between DMI and
energy sinks are given by

G,=A'GA ', R, =A'RA"".

The conditional posterior distribution of structural coefficients
does not depend on any unknown parameters of energy sinks, as-
suming zero genetic and residual correlations between RFI and
energy sinks. This feature drastically simplifies the posterior infer-
ence of structural coefficient matrix and unknown parameters for
RFI. Denote X = (/\12:)‘1151"':)‘1&),- We assumed a multivariate
normal prior distribution (MVN) for X. That is,
A AU,TQ ~MVN (1)\9,172) ,where 1isa (k- 1) x 1 vector of ones,
Iisa (k—1) x 1 (k— 1) identity matrix, and Aj and © are hyperpa-
rameters. Then, the conditional posterior distribution of A is also an
MVN distribution (Gianola and Sorensen, 2004; Wu et al., 2007),

independent of the equations for energy sinks. The conditional
posterior means of A are
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where E is the expectation, else represents the data and all other unknown model parameters, and w;, = y,, — (/.Ll +x0B, + zglal), for i
=1, ..., n. Similarly, the conditional posterior distribution of location parameters (i.e.. fixed and random etfects) and scaling parameters
(variance components), respectively, for RFI does not involve any unknown parameters for energy sinks either.

To see the link between the recursive model and linear regression for RFI, consider equation [3] and replace the structural coefficients,

A j, by partial regression coefficients, by,

forj=2, ..., k. If we move all the fixed and random effects to the left-hand side of the equation

and keep the energy sinks and the residual on the right-hand side, it becomes

1 o
Yo — kg — X3Py — 2z = (%2 Yis

by
bl

ya)| |+ ey 8]

by

Then, the least-squares solutions of the partial regression coefficients are as follows:

152 Z::] 9122

3
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where w,; = y;; — 1, — x;lﬁl — 32131- Note that [7] coincides pre-
cisely with [9] if we let ™ = 0in [7]. which is equivalent to as-
signing flat priors to structural coefficients in [9]. In other words,
the conditional posterior means of structural coefficients agree
with (or are asymptotically equivalent to) the partial regression
coefficients in one-step LR, given y;, B,., and a,, if we ignore the
prior values (or the impact of priors diminishes when the data
dominate the posteriors). Likewise, the same conclusion holds for
the location and scaling parameters between the recursive model
and one-step linear regression for RFI.

The data set consisted of 645 first-parity cows with phenotypes,
derived from 125 sires and 477 dams, and raised in the USDA
Beltsville Agricultural Research Center (BARC) Dairy Herd
(Beltsville, MD). The phenotypic data included DMI, MBW,
MILKNE, and ABW, all obtained as averages over a 42-d trial.
Their means (SD) were 28.9 (3.81) kg/d, 113.8 (6.71) kg*™, 21.1
(2.18) Mcal, and 0.47 (0.22) kg. Phenotypes were standardized
to means of zero and unit variance to facilitate comparing the
estimated effects between traits not atfected by the units of the
traits. The data standardization did not change the phenotypic
correlations, which were 0.441 (DMI vs. MBW), 0.556 (DMI vs.
MILKNE), 0.166 (DMI vs. ABW), 0.132 (MBW vs. MILKNE),
0.193 (MBW vs. ABW), and —0.036 (MILKNE vs. ABW). We
compared 2-stage models and one-step models tor RFIL, imple-
mented by LR and Bayesian RSEM, respectively. Model LR 1 was
the stage-one model of the 2-stage linear regression, with MBW,
MILKNE, and ABW as fixed effects. Model LR2 was a one-step
linear regression with 3 energy sinks and DIM (DIM = 71, 72, 73,
74, 75, 76, 77) as the fixed effects and individual animal effects
as random variables. Model LR3 had all the model parameters in
LR2, plus test weeks (i.e., 143 levels) as an nongenetic random
variable. Models RSEM 1, RSEM2, and RSEM3 were the Bayesian
recursive equation models of LR1, LR2, and LR3, respectively,
but with phenotypic recursive effects assumed from energy sinks

Z?: 1 Yi2llis
b _ Z :: 1 Yisio Zj: 1 ?1’?3

~1
n n
Z'é: | YioYik Zi:l Yiz%in
n n
Z i—1 YisYir: Zizl YizWi

1 y;zk Zn: YixWi
Zz 1 i=1

to DMI. For a Bayesian recursive model, we ran 30 parallel Mar-
kov chain Monte Carlo (MCMC) chains, each consisting of 2,200
iterations, with a burn-in of 2,000 iterations and thinned every 2
iterations. We also ran single-trait mixed-effects model analyses
on each of these traits, and a multiple-trait, mixed-effects model
(MT), with DIM as a fixed effect and test-week and animal effects
as random effects. Markov chain Monte Carlo convergence was
examined for the model parameters using the shrink factor (Gel-

Table 1. Mean or posterior mean (SD or posterior SD) of the estimated effects
of 3 energy sinks on DM, obtained using different models

Effects from energy sinks to DM’

Model MBW MILKNE ABW
LR?
LR1 0.351 (0.029) 0.514 (0.029) 0.117 (0.030)
LR2 0.331(0.030) 0.523 (0.029) 0.123 (0.029)
LR3 0.312 (0.029) 0.534 (0.028) 0.126 (0.030)
RSEM?
RSEM1 0.351 (0.030) 0.514 (0.029) 0.117 (0.030)
RSEM2 0.331(0.030) 0.522 (0.029) 0.124 (0.029)
RSEM3 0.311 (0.030) 0.530 (0.029) 0.126 (0.030)
mT*
Phenotypic 0.351 0.514 0.117
Genetic 0.257 0.746 1.185

"MBW = metabolic BW: MILKNE = milk net energy; ABW = change in BW.
2LR1 = linear regression with 3 energy sinks (MBW, MILKNE, and ABW) as the
fixed effects; LR2 = linear regression with DIM and 3 energy sinks as fixed
effects and individual animal genetic values as random effects; LR3 = LR2
plus test weeks (TW) as a nongenetic random variable.

*RSEM1-3 = Bayesian recursive models having the same set of model effects
as LR1-3.

*Phenotypic/Genetic = partial regression coefficients based on phenotypic
and genetic variance-covariance matrices from a multiple-trait model (MT),
respectively. DIM were included as fixed effects and TW and individual ani-
mal genetic values were included as random effects.
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man and Rubin, 1992). The MCMC chains, which were initialized
randomly, converged quickly. The shrink factor dropped below
1.1 after 200 iterations and approached 1.0 after 1,000 iterations
(see the graphical abstract). Saved posterior samples after 1,000
iterations were pooled and used to make the posterior inference of
unknown parameters.

The estimated effects from energy sinks to DMI (Table 1) agreed
well between LR and recursive models with similar settings (e.g.,
between LR1 and RSEMI1). On standardized phenotypic scales,
MILKNE had the largest effects on DMI (0.51 to 0.53), followed
by MBW (0.31 to 0.35), and ABW had the smallest effect on DMI
(0.12 to 0.13). Including different sets of fixed and random effects
led to varied RFI definitions, and the estimated partial regression
coefficients (or structural coefficients) varied accordingly. Never-
theless, the estimated RFI genetic values agreed very well between
a 2-stage model and a one-step model. The Spearman correlation
of the estimated RFI genetic values was close to | between LR1
and LR3 and between RSEM! and RSEM3. and rerankings hap-
pened rarely. The Spearman correlation between LR3 and RSEM3
was 0.998 (Figure 1, panel A). The differences were primarily due
to Monte Carlo errors.

The MT model allows for distinguishing between genetic and
residual eftects. The genetic partial regression coefficients did not
agree with the partial regression coefficients (or structural coeffi-
cients) obtained from single-trait LR (or recursive models). Never-
theless, the partial regression coefficients estimated from pheno-
typic (co)variance agreed very well with the partial regression co-
efficients from LR1 (or the structural coefficients from RSEMI).
The multiple-trait, mixed-effects model assumed correlational re-
lationships between the traits, which has no causal interpretation.
Nevertheless, a fully-recursiveness system can be assumed based
on the modified Cholesky decomposition (Lu et al., 2015). Con-
sider the phenotypic relationships, for example, in the present ex-
ample. The LY.L decomposition implies fully recursive relation-
ships for the traits (ordered by v, vis, Vi, and ;). Here, L is the
unit lower triangular matrix, which corresponds to the structural
coeflicient matrix in RSEM, as follows:

=

Spearman correlation = 0.998

1.0

y =-0.0001 + 0.996x

RFI genetic values from RSEM3
-0.5

-1.0

T T T T T
-0.5 0.0 05 1.0
RFI genetic values from LR3

374
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where b is the effect (i.e., partial regression coefficient) from trait

J'to traitj, and y,; = er:]b;j’yzj’: forj=2, ..., 4. The covariance
matrix between the reparameterized variables (v, Vi — bagvi,
Yy — Zj::;bl Yij» andy;; — Zj:‘ by ;y;;) is diagonal. meaning they
are mutually independent. Following the same Bayesian modeling
settings to implement the reparameterized M T model as a Bayesian
recursive model, we can show that b,,, b5, and b,, are estimated
identical to those for A, A4, and A, in [7]. However, they differed
in the assumed relationships between energy sinks. For example,
the model by Lu et al. (2015) assumed recursive effects from milk
energy on MBW, and the relationships between energy sinks are
correlational in a recursive model. The estimated partial regression
coefficients from the MT model based on the phenotypic covari-
ance matrix coincided precisely with the structural coetficients,
showing differences only after the third decimal point, but they can
vary depending on the data.

Overall, the heritability estimates obtained from RSEM3 and
single-trait LR were moderate to high for DMI (0.40-0.49) and
MBW (0.59) but low for ABW (0.002-0.04; Table 2). The heri-
tability estimate for RFT was 0.392 by one-step LR and 0.240 by
RSEM3. The heritability estimates for energy sinks were within
comparable ranges of previous studies (e.g., Berry and Crowley,
2013; Tempelman et al., 2015). The RFT heritability estimates were
similar to those reported by Connor et al. (2013). They reported
an RFT heritability of 0.36 using only the USDA AGIL (Animal
Genomics and Improvement Laboratory) data for early lactation
cows. Tempelman et al. (2015) reported lower RFI heritability es-
timates (0.18 + 0.02) and country-specific estimates ranging from
0.06 to 0.24. Residual feed intake heritability was 0.16 in data

=

Spearman correlation = 0.987

1.0

y =0.002 + 0.814x

0.5

RFI genetic values from RSEM3
-0.5
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[5)
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05 0.0 05 1.0
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Figure 1. Spearman correlation plots of the estimated genetic animal values obtained from different models: (A) Recursive structural equation model (RSEM3)
versus one-step linear regression (LR3); (B) RSEM3 versus multiple-trait mixed-effects model (MT).
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Table 2. Heritability estimates and genetic correlations for DMI, energy sinks, and residual feed intake, obtained using different models'

Item DMI MBW MILKNE ABW RFI
Heritability

ST-LR? 0.489 0.592 0.355 0.044 0.392

RSEM33 0.400 (0.028) 0.589(0.021) 0.190 (0.025) 0.002 (0.027) 0.240 (0.038)
Genetic correlations”

DMI 1 0.434 (0.060) 0.604 (0.055) 0.129 (0.090) 0.717

MBW 0.454 1 0.145 (0.126) 0.184 (0.150) 0

MILKNE 0.576 0.161 1 —0.089 (0.133) 0

ABW 0.119 0.206 —0.086 1 0

RFI 0.713 -0.022 0.012 -0.033 1

'MBW = metabolic BW: MILKNE = milk net energy; ABW = change in BW; RFI = residual feed intake.

2ST-LR (MT) = single trait (multiple-trait) mixed-effects model with DIM as the fixed effects, plus test weeks and individual animal genetic values as the random
effects; RSEM3 = Bayesian recursive model having DIM and 3 energy sinks (MBW, MILKNE, and ABW) as the fixed effects, plus test weeks and individual animal

genetic values as the random effects.
*Posterior standard deviations are shown in parentheses.

‘Genetic correlations obtained from RSEM3 (above diagonal) and MT (below diagonal).

sets that included the AGIL data (Lu et al.. 2015; Li et al., 2020).
Genetic correlations were moderate to high between DMI and RFT,
MBW, and MILKNE (0.44 to 0.72), and low between DMI and
ABW (0.13-0.20) and between MBW and MILKNE (0.15-0.16)
(Table 2). The genetic correlations between RFI and energy sinks
were forced to be zeros with RSEM3, but they had small values
(—0.03 to 0.01) based on the multiple-trait model.

The present study assumed a single, homogeneous structural
coefficient matrix. Model expansion to account for heteroge-
neous structural coefficient matrices is straightforward, where
the conditional distributions for structural coefficients take the
same formula but are sampled separately for each subpopulation
(Wu et al., 2010). The MT model also allows for distringuishing
between genetic and residual relationships. Which assumption is
more plausible remains a topic for further investigation. Modeling
simultaneous effects between energy sinks and DMI and between
energy sinks is possible, subject to the model identifiability.

References

Berry, D. P., and J. J. Crowley. 2013. Cell Biology Symposium: Genetics of
feed efficiency in dairy and beef cattle. J. Anim. Sci. 91:1594—1613. https:
//doi.org/10.2527/jas.2012-5862.

Connor, E. E., J. L. Hutchison, H. D. Norman, K. M. Olson, C. P. Van Tassell,
J. M. Leith, and R. L. Baldwin VI.. 2013. Use of residual feed intake in
Holsteins during early lactation shows potential to improve feed efficiency
through genetic selection. J. Anim. Sci. 91:3978-3988. hitps://doi.org/10
.2527/jas.2012-5977.

Gelman. A.. and D. B. Rubin. 1992. Inference from iterative simulation using
multiple sequences (with discussion). Stat. Sci. 7:457-511. https://doi.org/
10.1214/ss/1177011136.

Gianola, D., and D. Sorensen. 2004. Quantitative genetic models for describing
simultaneous and recursive relationships between phenotypes. Genetics
167:1407-1424. https://doi.org/10.1534/genetics.103.025734.

Herd, R. M. 2009. Residual feed intake. Pages 89—109 in Resource Allocation
Theory Applied to Animal Production. W. M. Rauw, ed. CABIL

Islam, M. S., J. Jensen, P. Levendahl, P. Karlskov-Mortensen, and M. Shirali.
2020. Bayesian estimation of genetic variance and response to selection
on linear or ratio traits of feed efficiency in dairy cattle. J. Dairy Sci.
103:9150-9166. https://doi.org/10.3168/jds.2019-17137.

Jamrozik, T., J. Johnston, P. G. Sullivan, and F. Miglior. 2017. Recursive model
approach to traits defined as ratios: Genetic parameters and breeding val-
ues. J. Dairy Sci. 100:3767-3772. https://doi.org/10.3168/jds.2016-12177.

Kennedy, B. W., J. H. J. Vanderwerf, and T. H. E. Meuwissen. 1993. Genetic and
statistical properties of residual feed intake. J. Anim. Sci. 71:3239-3250.
https://doi.org/10.2527/1993.71123239x.

Koch, R. M., L. A. Swiger, D. Chambers, and K. E. Gregory. 1963. Efficiency
of feed use in beef cattle. J. Anim. Sci. 22:486-494. https://doi.org/10
.2527/7as1963.222486x.

Li, B., P. M. VanRaden, E. Guduk, J. R. O’Connell, D. J. Null, E. E. Connor,
M. I. VandeHaar, R. J. Tempelman, K. A. Weigel, and J. B. Cole. 2020.
Genomic prediction of residual feed intake in US Holstein dairy cattle. J.
Dairy Sci. 103:2477-2486. https://do1.org/10.3168/1ds.2019-17332.

Lovendahl, P., G. F. Difford, B. Li, M. G. G. Chagunda, P. Huhtanen, M. H.
Lidauer, J. Lassen, and P. Lund. 2018. Review: Selecting for improved
feed efficiency and reduced methane emissions in dairy cattle. Animal
12:5336-s349. https://do1.org/10.1017/S1751731118002276.

Lu, Y., M. J. Vandehaar, D. M. Spurlock, K. A. Weigel, L. E. Armentano, C. R.
Staples, E. E. Connor, Z. Wang, N. M. Bello, and R. J. Tempelman. 2015.
An alternative approach to modeling genetic merit of feed efficiency in
dairy cattle. J. Dairy Sci. 98:6535-6551. https:/do1.org/10.3168/jds.2015
-9414.

Martin, P., V. Ducrocq, P. Faverdin, and N. C. Friggens. 2021. Disentangling re-
sidual feed intake—Insights and approaches to make it more fit for purpose
in the modern context. J. Dairy Sci. 104:6329-6342.

Pryce, J. E., O. Gonzalez-Recio, G. Nieuwhof, W. J. Wales, M. P. Coffey. B.
J. Hayes, and M. E. Goddard. 2015. Definition and implementation of a
breeding value for feed efficiency in dairy cows. J. Dairy Sci. 98:7340-
7350. https://do1.org/10.3168/;ds.2015-9621.

Tempelman, R. J., and Y. Lu. 2020. Symposium review: Genetic relationships
between different measures of feed efficiency and the implications for
dairy cattle selection indexes. J. Dairy Sci. 103:5327-5345. https://doi.org/
10.3168/;ds.2019-17781.

Tempelman, R. J., D. M. Spurlock, M. Coffey, R. F. Veerkamp, L. E. Armen-
tano, K. A. Weigel, Y. de Haas, C. R. Staples, E. E. Connor, Y. Lu, and
M. J. VandeHaar. 2015. Heterogeneity in genetic and nongenetic variation
and energy sink relationships for residual feed intake across research sta-
tions and countries. J. Dairy Sci. 98:2013-2026. https://doi.org/10.3168/
1ds.2014.8510.

Wu, X.-L., B. Heringstad, Y. M. Chang, G. de Los Campos, and D. Gianola.
2007. Inferring relationships between somatic cell score and milk yield us-
ing simultaneous and recursive models. J. Dairy Sci. 90:3508-3521. https:
//do1.0rg/10.3168/;ds.2006-762.

Wu, X.-L., B. Heringstad, and D. Gianola. 2008. Exploration of lagged relation-
ships between mastitis and milk yield in dairy cows using a Bayesian struc-
tural equation Gaussian-threshold model. Genet. Sel. Evol. 40:333-357.
https://do1.org/10.1051/gse:2008009.

Notes

This study had no external sources of funding.

Authors XIW, KLPG, JB, HDN, EN. and JD are employees of the Council on
Dairy Cattle Breeding (CDCB), a nonprofit organization. The authors have not
stated any other conflicts of interest.

JDS Communications 2021; 2: 371-375



