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ABSTRACT

Genetic selection has been a very successful tool 
for the long-term improvement of livestock popula-
tions, and the rapid adoption of genomic selection over 
the last decade has doubled the rate of gain in some 
populations. Breeding programs seek to identify geneti-
cally superior parents of the next generation, typically 
as a function of an index that combines information 
about many economically important traits into a single 
number. In the United States, the data that drive 
this system are collected through the national dairy 
herd improvement program that began more than a 
century ago. The resulting information about animal 
performance, pedigree, and genotype is used to com-
pute genomic evaluations for comparing and ranking 
animals for selection. However, the full expression 
of genetic potential requires that animals are placed 
in environments that can support such performance. 
The Agricultural Research Service of the US Depart-
ment of Agriculture and the Council on Dairy Cattle 
Breeding collaborate to deliver state-of-the-art genomic 
evaluations to the dairy industry. Today, most breeding 
stock are selected and marketed using the net merit 
dollars (NM$) selection index, which evolved from 2 
traits in 1926 (milk and fat yield) to a combination of 
36 individual traits following the last NM$ update in 
2018. Updates to NM$ require the estimation of many 
different values, and it can be difficult to achieve con-
sensus from stakeholders on what should be added to, 
or removed from, the index at each review, and how 
those traits should be weighted. Over time, the major-
ity of the emphasis in the index has shifted from yield 
traits to fertility, health, and fitness traits. Phenotypes 
for some of these new traits are difficult or expensive 

to measure, or require changes to on-farm habits that 
have not been widely adopted. This is driving interest 
in sensor-based systems that provide continuous mea-
surements of the farm environment, individual animal 
performance, and detailed milk composition. There is 
also a need to capture more detailed data about the 
environment in which animals perform, including in-
formation about feeding, housing, milking systems, and 
infectious and parasitic load. However, many challenges 
accompany these new technologies, including a lack 
of standardization or validation, need for high-speed 
internet connections, increased computational require-
ments, and interpretations that are often not backed by 
direct observations of biological phenomena. This work 
will describe how US selection objectives are developed, 
as well as discuss opportunities and challenges associ-
ated with new technologies for measuring and recording 
animal performance.
Key words: breeding programs, genetic improvement, 
selection objectives, total merit indices

INTRODUCTION

Selection indices are essential tools in modern dairy 
cattle breeding because they enable information about 
many traits to be combined into a single value for rank-
ing animals and making selection decisions. The ideal 
breeding objective for dairy cattle remains a popular 
topic, even if consensus is elusive, and is frequently 
discussed in the scientific and popular literature (e.g., 
Hazel et al., 1994; Philipsson et al., 1994; VanRaden, 
2004; Miglior et al., 2005; Shook, 2006; Miglior et 
al., 2017; Cole and VanRaden, 2018; Binversie, 2019; 
Dechow, 2020; Schmidt, 2020). There is no single selec-
tion objective that is ideal for all populations, or all 
herds within a population, but there is a general set of 
principles that should be followed when developing an 
index (e.g., Cameron, 1997).

Historically, selection indices in the United States 
were developed by the United States Department of 
Agriculture (USDA) and by purebred dairy cattle 
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associations (PDCA). Input has also been provided 
by scientists at land-grant universities and technical 
experts at breeding companies, using data available 
through the national milk recording system and breed 
type appraisal programs. Proposed indices from the 
USDA were typically reviewed by groups of experts, 
and information about the derivation of the indices was 
published in technical and trade publications, ensuring 
confidence in the values because of that review process. 
Recently, genetic evaluations for novel traits and new 
selection indices have been computed and distributed 
by companies such as GENEX and Zoetis. Both of these 
organizations publish their own indices, which include a 
combination of traits from the Council on Dairy Cattle 
Breeding (CDCB) evaluations and their own propri-
etary traits (i.e., hoof health in the case of GENEX, 
and cow and calf health traits in the case of Zoetis). 
This provides farmers with new tools and may drive 
demand for new phenotypes, but transparent review 
processes are often lacking. Correlations among indices 
are generally strong (T. J. Lawlor Jr., Holstein Associa-
tion USA, Brattleboro, VT; personal communication), 
and in such cases, it is unclear if new tools provide new 
information or serve only as marketing tools.

This paper will describe how decisions about selec-
tion indices are made in the United States, discuss 
traits that may be included in future changes to exist-
ing indices, and identify opportunities associated with 
new technologies for recording animal performance. 
Although the focus is on the US dairy sector, examples 
from other countries are discussed when appropriate.

DEVELOPMENT OF SELECTION OBJECTIVES

Who Are the Participants in the US Dairy Sector?

To explain how selection decisions are made, we must 
briefly review the stakeholders in the process (Wiggans 
et al., 2017; Figure 1). The Animal Genomics and Im-
provement Laboratory is part of the Agricultural Re-
search Service, USDA’s in-house research arm, and was 
responsible for the development of the indices shown in 
Table 1 (sometimes under other laboratory names due 
to Agricultural Research Service organizational chang-
es). The CDCB operates the national genetic evalua-
tion system and maintains the national cooperator da-
tabase. The CDCB board includes representatives from 
all key industry participants, including the National 
Dairy Herd Information Association (NDHIA), Dairy 
Records Processing Centers, the National Association 
of Animal Breeders, and the PDCA. The field service 
organizations and milk testing laboratories that operate 
the national milk recording program are represented by 

NDHIA; the organizations that aggregate and distrib-
ute milk testing data and provide herd management 
information are represented by the Dairy Records Pro-
cessing Centers; the AI companies, who own most of 
the bulls and many elite females, are represented by 
the National Association of Animal Breeders; and the 
breeders, who own most of the elite cattle, are repre-
sented by the PDCA. In addition, CDCB has several 
advisory groups that include farmers, researchers, and 
allied industry personnel that review and provide feed-
back on data quality and proposed changes to the ge-
netic evaluation system. Scientists from the land-grant 
universities provide valuable technical expertise to the 
Animal Genomics and Improvement Laboratory and 
CDCB, both as individual consultants and through the 
SCC-084 Multistate Research Coordinating Committee 
and Information Exchange Group. This group meets 
annually to share results and plan future research on 
selection and mating strategies to improve dairy cattle 
performance, efficiency, and longevity. All of these par-
ticipants in the national dairy improvement program 
have opportunities to influence the selection indices 
adopted by CDCB, some directly, and others indirectly.
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Figure 1. The general structure of the US dairy cattle improve-
ment sector. Solid lines indicate board membership in an organization, 
and broken (dashed) lines represent advisory relationships. AGIL = 
Animal Genomics and Improvement Laboratory, Agricultural Research 
Service, United States Department of Agriculture (constructs the in-
dex); CDCB = Council on Dairy Cattle Breeding (operates the nation-
al genetic evaluation system and maintains the national cooperator 
database); DRPC = Dairy Records Processing Centers (aggregate and 
distribute milk testing data and provide herd management informa-
tion); NAAB = National Association of Animal Breeders (represents 
breeding companies); DHI = Dairy Herd Improvement (oversees the 
national milk recording program); PDCA = Purebred Dairy Cattle 
Associations (represents breeders). Scientists at the land-grant univer-
sities provide technical expertise.
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In addition to the organizations with direct represen-
tation on the CDCB board, there are several entities 
that participate in the collection and transfer of genom-
ic information (Figure 2). The genomic nominators are 
responsible for collecting DNA samples from the animal 
owner, providing CDCB with information about the 
animals sampled, and transferring the DNA samples to 
the genotyping laboratory. The genotyping laboratory 
extracts DNA from samples, prepares SNP genotypes, 
provides summary information back to the nominator, 
and transfers the genotypes to the CDCB. Genomic 
evaluations are sent from the CDCB to the nominators, 
and on to the records providers. Both the nominators 
and laboratories must meet quality certification guide-
lines before they are permitted to participate in the 
system, and their performance is audited on an annual 
basis.

How Are Decisions About Selection Criteria Made?

How Are the Index Weights Determined? Selec-
tion indices must be periodically updated to include 
new traits and reflect changing economic conditions, 
as well as changing genetic parameters between and 
among traits. From the development of the first USDA 
index (Norman and Dickinson, 1971) until the pres-
ent (VanRaden et al., 2018), a collaborative model has 
been used to propose and adopt changes to the indi-
ces. Although an argument can be made that changes 

should be driven strictly by mathematics—and we are 
sympathetic to this position—the reality is that tools 
will not be adopted unless the intended users perceive 
value in the tool. The net merit dollars (NM$) weights 
are primarily based on selection index theory, with 
fine-tuning based on consensus expert opinion, which 
reflects the well-known challenge of computing index 
weights (Freeman, 1984). It is also more difficult to 
compute the incomes and expenses associated with 
traits in the index than the textbooks suggest, and 
input from the field is very helpful in that regard. Our 
experience over the last 50 yr suggests that collabora-
tion not only drives increased adoption of the indices, 
it also builds support for other communal efforts, such 
as the recording of new phenotypes so that they may 
eventually be included in the index.

Who Owns the Index? Responsibility for the na-
tional cooperators database and the genetic evaluation 
system was passed from USDA to CDCB in 2013, but 
NM$ and its companion indices (cheese merit, fluid 
merit, and grazing merit; VanRaden, 2000; Gay et al., 
2014) require both index weights and genetic values 
to compute. When an index is owned by a PDCA or 
an AI company, it is clear who has the authority to 
make changes and the responsibility for distributing 
the calculations. In the case of NM$, USDA and CDCB 
share these roles: USDA is responsible for construction 
of the index, and CDCB provides the data needed to 
calculate and distribute the values. Both organizations 
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Table 1. Traits included in United States Department of Agriculture selection indices1 and the relative emphasis placed on each, 1971–2018 
(Cole and VanRaden, 2018)

Trait2

Relative emphasis on trait (%)

PD$ 
(1971)

MFP$ 
(1976)

CY$ 
(1984)

NM$ 
(1994)

NM$ 
(2000)

NM$ 
(2003)

NM$ 
(2006)

NM$ 
(2010)

NM$ 
(2014)

NM$ 
(2017)

NM$ 
(2018)

Milk 52 27 –2 6 5 0 0 0 −1 −1 −1
Fat 48 46 45 25 21 22 23 19 22 24 27
Protein — 27 53 43 36 33 23 16 20 18 17
PL — — — 20 14 11 17 22 19 13 12
SCS — — — −6 −9 −9 −9 −10 −7 −7 −4
UC — — — — 7 7 6 7 8 7 7
FLC — — — — 4 4 3 4 3 3 3
BWC — — — — −4 −3 −4 −6 −5 −6 −5
DPR — — — — — 7 9 11 7 7 7
SCE — — — — — −2 — — — — —
DCE — — — — — −2 — — — — —
CA$ — — — — — — 6 5 5 5 5
HCR — — — — — — — — 1 1 1
CCR — — — — — — — — 2 2 2
LIV — — — — — — — — — 7 7
HTH$ — — — — — — — — — — 2
1PD$ = Predicted Difference Dollars (Dickinson et al., 1971); MFP$ = Milk-Fat-Protein Dollars (Norman et al., 2010); CY$ = Cheese Yield 
Dollars (Norman, 1986); NM$ = Lifetime Net Merit Dollars (VanRaden and Wiggans, 1995).
2PL = productive life; UC = udder composite; FLC = feet and legs composite; BWC = body weight composite; DPR = daughter pregnancy 
rate; SCE = sire (direct) calving ease; DCE = daughter (maternal) calving ease; CA$ = calving ability dollars; HCR = heifer conception rate; 
CCR = cow conception rate; LIV = cow livability; HTH$ = health dollars.
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have input into the evolution of the index, but neither 
owns it. Lifetime net merit was initially developed by 
USDA scientists (VanRaden and Wiggans, 1995), but 
it has remained relevant because of the USDA-CDCB 
partnership. The success of NM$ has not prevented 
other organizations from developing their own selection 
tools, and farmers have many indices from which to 
choose if NM$ does not meet their expectations.

How Do We Validate Our Indices? Selection 
indices are constructed using many calculations based 
on a substantial body of scientific theory (e.g., Hazel 
et al., 1994). Complex traits, such as longevity, remain 
difficult to model properly, and there is some dispar-
ity between management practices in the field and 
optimal economic strategies (Schmitt et al., 2019; De 
Vries, 2020). It can be difficult to confirm that realized 
selection gains are consistent with index predictions, 
but some recent reports show that animals with greater 
genetic merit are more profitable than their contem-
poraries with lower rankings. In the United States, 
scientists from Zoetis and the University of Pennsyl-
vania recently showed that cows in the top quartile for 
the Dairy Wellness Profit index had greater lifetime 
profit than herdmates in lower quartiles (Fessenden et 
al., 2020). The lack of farm-level income and expense 
data in the national cooperator database makes it dif-

ficult to perform routine validation of the index, but 
collaboration with projects such as the Dairy Profit 
Monitor program at Cornell University (https:​/​/​cals​
.cornell​.edu/​pro​-dairy/​our​-expertise/​business/​dairy​
-profit​-monitor) could support such an effort.

How Have Selection Indices Evolved Over Time?

What Traits Are in the Index? The emphasis 
placed on each trait in each revision of the selection 
index is shown in Table 1, and the rate at which new 
traits are added to the index has increased consider-
ably in recent years. This represents changes in dairy 
economics, an improved understanding of the biology of 
the cow, and greater ease of collecting and transferring 
data. The first selection index published by USDA was 
the Predicted Difference Dollars index, which included 
information about milk and fat production (Norman 
and Dickinson, 1971). Although it was recognized at 
the time that other traits might have economic impor-
tance, milk and fat were the only traits with enough 
phenotypic information available to support genetic 
evaluations. Protein yield was added to Predicted Dif-
ference Dollars in 1976 to produce the Milk-Fat-Protein 
Dollars index (Norman et al., 1979), and an index for 
cheese yield was developed in 1984 (Norman, 1986). 
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Figure 2. Flow of information among participants in the national genomic evaluation system.

https://cals.cornell.edu/pro-dairy/our-expertise/business/dairy-profit-monitor
https://cals.cornell.edu/pro-dairy/our-expertise/business/dairy-profit-monitor
https://cals.cornell.edu/pro-dairy/our-expertise/business/dairy-profit-monitor
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This was the status quo until 1994, when productive 
life and SCS were combined with the yield traits to 
produce the first iteration of the Lifetime Net Merit 
index (VanRaden and Wiggans, 1995).

Although the combination of fitness, conformation, 
and production traits included in the first version of 
NM$ in 1994 set it apart from most of its international 
competitors, the Scandinavian countries began record-
ing health and fertility data in the 1960s and computing 
genetic evaluations for those traits in the 1970s (Phil-
ipsson and Lindhé, 2003). Their experience showed that 
selection objectives that include traits with low heri-
tabilities can produce worthwhile gains in cow health 
and fertility. Leitch (1994) reviewed 19 contemporary 
selection indices and found that only 2 (Danish S-Index 
and US NM$) included mastitis resistance, 1 included 
fertility (Danish S-Index), and 1 included productive 
life (US NM$). In a review based on an independent 
survey, Philipsson et al. (1994) identified several other 
countries’ indices (Finland, Norway, Slovenia, and Swe-
den) that also included fitness traits. When Miglior et 
al. (2005) revisited the subject a decade later, each of 
the 17 indices reviewed included 1 or more fitness traits 
as part of the selection criterion. This trend toward the 
inclusion of more fitness traits in total merit indices has 
continued (Cole and VanRaden, 2018), and it is now 
more remarkable when an index does not include such 
traits than when it does.

There Is No Universal Standard. It is tempt-
ing to assume that it is possible to define a universal 
total merit index, but that is not possible because every 
farmer operates in a slightly different economic and 
environmental setting than their neighbors. In theory, 
every farm should actually use its own selection index 
that is customized to its financial situation and busi-
ness objectives (Gjedrem, 1972). In practice, farms 
with similar operating and financial characteristics can 
use the same index with little loss of efficiency. It is also 
difficult to assign direct economic values to some traits, 
most notably conformation traits. Different breeders 
have different goals, which can affect their breeding 
programs. A commercial dairy that derives its income 
principally from the sale of milk solids will have differ-
ent incomes and expenses than a seedstock breeder who 
also sells embryos and elite germplasm, and they may 
benefit from using different indices. Lifetime net merit 
is explicitly developed for use by commercial dairy 
farmers (VanRaden, 2004), and Holstein Association 
USA’s Total Performance Index is intended for use by 
registered cattle breeders who often sell genetics as well 
as milk.

More than 1 index is needed because farmers sell 
their products into different markets (e.g., VanRaden, 

2000), have different personal preferences (e.g., Martin-
Collado et al., 2015), and strategies for maximizing 
profit vary (e.g., Berry et al., 2019). As noted earlier, 
the CDCB publishes 4 separate indices (lifetime net 
merit, fluid merit, cheese merit, and grazing merit) 
to provide farmers with options that best match their 
needs. The strategy of providing multiple indices to its 
farmers is certainly not unique to the United States For 
example, when the Australian Dairy Herd Improvement 
Scheme (now DataGene) revised the Australian Profit 
Ranking index in 2016, they replaced it with 3 new 
indices (Byrne et al., 2016). The Balanced Performance 
Index, Health Weighted Index, and Type Weighted 
Index allow their farmers to focus on trait groups that 
are most important to them within a technically sound 
framework.

Are There Too Many Indices Already? The 
last several years have seen the development of many 
new selection indices marketed to commercial dairy 
farmers. In contrast to NM$ and indices published by 
PDCA, many of these new indices are promoted by 
breeding companies as a means of differentiating their 
products. Several selection indices currently available 
to US dairy farmers are shown in Table 2, although 
this is not an exhaustive list (some organizations do 
not make the details of their index publicly available). 
These tools include indices developed by USDA, PDCA 
(e.g., American Jersey Cattle Association), and com-
mercial organizations (e.g., Zoetis). In general, most 
indices are similar in that they are seeking to find a bal-
ance between productivity (the direct source of much 
farm income) and fitness traits (often a source of direct 
costs). Direct comparisons are challenging because 
some indices are available only for bulls marketed by 
the publisher of the index. Most differences among in-
dices are due to the inclusion of different sets of traits, 
or to the differential weighting of such traits in the 
index. Some companies develop proprietary evaluations 
to differentiate their offerings from those of their com-
petitors. Correlations among these indices generally are 
very strong, and there is minimal reranking of bulls 
when moving from one index to another (T. J. Lawlor 
Jr., Holstein Association USA, Brattleboro, VT; per-
sonal communication). However, farmers may not be 
able to clearly describe differences between each index, 
providing some opportunities for confusion. There also 
is concern that marketers may be over-stating the im-
portance of the differences between the indices.

Are Selection Indices Responsible for Reduc-
ing Diversity in Some Breeds? It is tempting to 
place the blame for the ongoing loss of genetic diver-
sity in US Holsteins (e.g., Maltecca et al., 2020) on 
breeders who avidly pursue high-index animals, but 
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increases in rates of inbreeding are more likely driven 
by gains in selection intensity as a result of genomic 
technology (García-Ruiz et al., 2016). The short gen-
eration intervals and high rates of gain in each genera-
tion have driven seedstock producers to sample heavily 
within lines that have already produced successful 
bull families. Each company has limited resources for 
identifying elite animals, and the risk of losing market 
share to a competitor is greater now than it was un-
der traditional progeny testing programs because of 
the speed with which genetic gains accumulate. This 
is probably why the decline in the rate of inbreeding 

under genomic selection predicted by Daetwyler et al. 
(2007) has not materialized—no large AI company is 
willing to risk sampling largely from outcross families. 
Even if there was a market for outcross bulls, most 
phenotypes are collected from daughters of popular 
families, and prediction accuracies will be lower for 
the outcross animals. However, the long-term value of 
broadening the genetic base may be worth the sacri-
fice of some short-term accuracy. This is similar to 
the trade-off between changes in inbreeding and rates 
of genetic gain made in optimal contribution theory 
(Clark et al., 2013).
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Table 2. Some selection indices1 currently offered to US dairy farmers

Trait2
BS PPR 
(2017)

AY CPI 
(2019)

GU PTI 
(2020)

JE JPI 
(2020)

HO ICC$ 
(2020)

JE ICC$ 
(2020)

HO TPI 
(2020)

USDA NM$ 
(2018)

Milk — — — — 5 — — −1
Fat 28 25 25 19 14 22 19 27
Protein 34 35 25 27 12 22 19 17
PL 6 — 6 5 6 12 5 12
SCS — −4 — −4.5 −4 −4 −4 −4
UC 10 — 10 — 7 5 11 7
FLC — — 10 — — — 6 3
BWC — — — — — — — −5
DPR 12 6 15 9 8 12 9.1 7
SCE — — — — −2 — — —
DCE — — — — −1 — −0.5 —
SSB — — — — −1 — —  
DSB — — — — −1 — −1.5  
CA$ — — — — — — — 5
HCR — — — 2 5 6 1.3 1
CCR — — — 3.5 — 3 1.3 2
LIV 4 — 3 3 2 5 3 7
HLTH — — — 4.6 4 — 2 2
MO 6 — — — — — —  
TYPE — 25 — 19.4 — — 8  
UDEP — 5 — — — — —  
STR — — 3 — — — —  
STAT — — 3 — — — —  
DENS — — — −3 — — —  
FEED — — — — 16 — 8  
POLL — — — — 1 — —  
HAPL — — — — <1 1 —  
LOCO — — — — 6 — —  
HOOF — — — — 1 — —  
BCS — — — — 1 — —  
MAST — — — — 1 4 —  
SPD — — — — 1 — —  
TEMP — — — — <1 — —  
CALF — — — — — 4 —  
EFC — — — — — 1 1.3  
1Due to rounding, columns will sometimes sum to a value slightly smaller or larger than 100. BS PPR = Brown Swiss Progressive Performance 
Ranking (Brown Swiss Association, 2017); AY CPI = Cow Performance Index (US Ayrshire Breeders’ Association, 2020); GU PTI = Performance 
and Type Index (American Guernsey Association, 2020); JE JPI = Jersey Performance Index (Tauchen, 2020); HO ICC$ = Ideal Commercial 
Cows for Holsteins (Genex, 2020a,b); JE ICC$ = Ideal Commercial Cows for Jerseys (Genex, 2020a,b); HO TPI = Total Performance Index 
(Holstein Association USA, 2020); USDA NM$ = Net Merit Dollars (VanRaden et al., 2018).
2PL = productive life; UC = udder composite (varies by breed and index); FLC = feet and legs composite; BWC = body weight composite; DPR 
= daughter pregnancy rate; SCE = sire (direct) calving ease; DCE = daughter (maternal) calving ease; CA$ = calving ability dollars; HCR = 
heifer conception rate; CCR = cow conception rate; LIV = cow livability; HLTH = health traits (varies by breed and index); MO = mobility 
(Brown Swiss); TYPE = type (conformation) composite (varies by breed); UDEP = udder depth; STR = strength; STAT = stature; DENS = 
milk density; FEED = feed intake/feed cost (varies by breed and index); SSB = sire (direct) stillbirth; DSB = daughter (maternal) stillbirth; 
POLL = polled status; HAPL = haplotypes affecting fertility; LOCO = locomotion; HOOF = hoof health; MAST = clinical mastitis; SPD = 
milking speed; TEMP = milking temperament; CALF = calf survivability; EFC = early first calving (age at first calving).
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It also is possible that the proliferation of indices 
could lead to the development of more strains within 
the Holstein breed, with greater inbreeding within 
each strain but greater diversity overall when crossing 
strains. Such schemes are similar to breeding strategies 
proposed for nucleus herd programs (e.g., Meuwissen, 
1998), although they are more common in the swine 
and poultry sectors. Some breeding companies offer 
mating schemes based on the assignment of young sires 
to genetic lines within the breed (e.g., Select Sires Inc., 
2020), although the manner in which bulls are assigned 
to lines is not clear.

What Will US Indices Look Like in the Future?

In many ways, 2021 is a critical year in the evolution 
of US selection indices. The number of traits evaluated 
continues to increase, and is overwhelming to many, 
which suggests that new ways to group and express 
traits may be needed. The planned addition of feed 
saved to NM$ (Council on Dairy Cattle Breeding, 2020) 
will heighten tensions between economic value and trait 
reliability, and might make it impossible to continue 
publishing a single index for use by all breeds. If pro-
ducers begin to question the credibility of the index, 
then they may turn to commercial indices developed by 
AI companies or, in the case of larger farms, develop 
their own custom tool for ranking animals for selection.

Adoption of Subindices. As the number of traits 
included in selection indices continues to grow, there 
is growing interest in constructing NM$ as the sum of 
subindices, which Cole and VanRaden (2018) discussed 
in some detail. The idea is straightforward: instead of 
presenting an index composed of all traits of economic 
importance to farmers, biologically similar traits are 
grouped together into subindices that represent the 
expected portion of an individual’s NM$ due to their 
genetic merit for that set of traits. The total merit in-
dex is thus the sum of the subindices. The principal 

advantage of this approach is that it permits breeders 
to focus on groups of traits that are important, such 
as cow health, without the need to focus on the indi-
vidual details of each trait. For example, Table 3 shows 
a hypothetical version of NM$ that is constructed as 
the sum of 6 subindices: production, longevity, fertility, 
type, calving ability, and health. This example includes 
some traits that are not currently included in NM$ 
(heifer livability and gestation length), and the weights 
are strictly speculative, but it demonstrates how the fo-
cus shifts from individual traits to functionally similar 
groups of traits. Feed intake might initially be grouped 
with the production traits, but if additional efficiency 
traits are added, such as methane or carbon dioxide 
production, a sustainability subindex could be created. 
Although grouping traits into subindices would be a 
new approach for NM$, the Total Performance Index 
(Holstein Association USA, 2020) has been constructed 
using this strategy for many years.

Can We Continue to Use the Same Index 
Across All Breeds? Historically, USDA has used the 
same selection index weights for all breeds. When a 
phenotype is not available for a breed, such as calving 
traits in Jersey, a value of 0 is assigned to that trait 
when the index is computed. This means that the rela-
tive emphasis each trait receives in the index varies by 
breed (Table 4), which may not be obvious from the 
technical documentation (e.g., VanRaden et al., 2018). 
There is no reranking within breeds because all ani-
mals receive the same value for the traits that are not 
evaluated, but as the differences between breeds grow, 
the index weights will no longer be optimal. In theory, 
there should be a breed-specific version of each index 
for each breed, which would result in 24 indices in place 
of the current 4.

This problem is likely to increase in magnitude due to 
the planned addition of feed saved (FS) to the indices, 
which will have a large economic value (VanRaden et 
al., 2017) and relatively low reliability compared with 
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Table 3. Hypothetical composition of a future lifetime Net Merit index that is the sum of subindices for production (PRO$), longevity (LON$), 
fertility (FER$), type (conformation; TYP$), calving ability (CA$), and health (HTH$)1

PRO$ (39)   LON$ (27)   FER$ (10)   TYP$ (11)   CA$ (7)   HTH$ (6)

Milk (1)   PL (12)   DPR (6)   FLC (2)   SCE (1)   MAST (1)
Fat (21)   LIV (7)   HCR (1)   UDC (5)   SCE (1)   METR (1)
Protein (17)   HLV (2)   CCR (2)   BWC (4)   SSB (1)   RPL (1)

  SCS (6)   EFC (1)       DSB (1)   KETO (1)
              GL (2)   DSAB (1)
              BWT (1)   MFEV (1)

1PL = productive life; BWC = body weight composite; UDC = udder composite; FLC = feet and legs composite; DPR = daughter pregnancy 
rate; SCE = sire (direct) calving ease; DCE = daughter (maternal) calving ease; SSB = sire (direct) stillbirth; DSB = daughter (maternal) 
stillbirth; HCR = heifer conception rate; CCR = cow conception rate; LIV = cow livability; GL = gestation length; RFI = residual feed intake; 
MFV = milk fever (hypocalcemia); DAB = displaced abomasum; KET = ketosis; MAS = clinical mastitis, MET = metritis; RPL = retained 
placenta; EFC = early first calving.



5118

Journal of Dairy Science Vol. 104 No. 5, 2021

many other traits (Tempelman and Lu, 2020). In addi-
tion to affecting the overall reliability of the indices, it 
has the potential to shift the realized selection differ-
entials if breeds other than Holstein receive a value of 
0 for FS. Such distortions would not simply reduce the 
perceived utility of the indices, but they could affect 
bull rankings and, therefore, mating decisions. In that 
case, there would be additional value in switching from 
NM$ to a breed-specific index.

Is There a Role for Customized Indices? Na-
tional selection indices are necessarily based on the 
assumption that incomes and expenses are similar for 
all farmers. This may have been true when farms were 
similar to each other in terms of size and management, 
but there are now considerable interactions of herd size 
with herd management. For example, 55.3% of small 
herds (30–99 cows) are conventional confinement dair-
ies and 5.1% are grazing operations, but large herds 
(500+ cows) are 93.8% conventional and 0.7% graz-
ing (USDA, 2014). In addition to these differences in 
feeding and management, some farms also have income 
streams related to the sale of elite genetics (as embryos 
or calves) or the production of certified organic prod-

ucts. Given such diversity, it is understandable that 
some farmers might prefer an index tailored to their 
individual situation.

Customized indices at the farm level were first de-
livered by McGilliard and Clay (1983), who developed 
a software tool for selecting groups of bulls to meet 
individual farm-level goals. Bowman et al. (1996) de-
veloped customized indices for Australian dairy farm-
ers, but they were not widely adopted. In addition to 
the growth in the number of indices discussed earlier, 
there is growing interest in customized indices at the 
farm level (Dickrell, 2017). Many farms today have ac-
cess to powerful computers and broadband or cellular 
internet, providing them with the ability to transfer 
data and perform calculations on the farm, although 
broadband access still lags in many rural areas (Fed-
eral Communications Commission, 2018). Some dairies 
have been taking advantage of access to these tools 
to develop their own selection objectives. For example, 
North Florida Holsteins (Bell, Florida) is a 10,000-cow 
dairy that uses its own custom index to rank bulls for 
breeding (D. Bennink, North Florida Holsteins, Bell, 
FL; personal communication). Their index places more 
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Table 4. Traits included in the lifetime Net Merit index on a breed-specific1 versus all-animals basis

Trait2   AY   BS   GU   HO   JE   MS

Milk   X X X X X X
Fat   X X X X X X
Protein   X X X X X X
PL   X X X X X X
SCS   X X X X X X
BWC   X X X X X X
UDC   X X X X X X
FLC   X X X X X X
DPR   X X X X X X
SCE   – X – X – –
DCE   – X – X – –
SSB   – – – X – –
DSB   – – – X – –
HCR   X X X X X X
CCR   X X X X X X
LIV   X X X X X X
GL   X X X X X X
RFI   – – – X – –
MFV   – – – X X –
DAB   – – – X X –
KET   – – – X X –
MAS   – – – X X –
MET   – – – X X –
RPL   – – – X X –
EFC   X X X X X X
1AY = Ayrshire; BS = Brown Swiss; GU = Guernsey; HO = Holstein; JE = Jersey; MS = Milking Shorthorn.
2PL = productive life; BWC = body weight composite; UDC = udder composite; FLC = feet and legs com-
posite; DPR = daughter pregnancy rate; SCE = sire (direct) calving ease; DCE = daughter (maternal) calving 
ease; SSB = sire (direct) stillbirth; DSB = daughter (maternal) stillbirth; HCR = heifer conception rate; CCR 
= cow conception rate; LIV = cow livability; GL = gestation length; RFI = residual feed intake; MFV = milk 
fever (hypocalcemia); DAB = displaced abomasum; KET = ketosis; MAS = clinical mastitis; MET = metritis; 
RPL = retained placenta; EFC = early first calving.
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emphasis on fertility, productive life, udders, and mo-
bility than does NM$, reflecting the perceived effects 
of those traits on profitability in that herd. However, 
some farmers may describe tools used to rank animals 
(customized indices) and the rules that assign bulls 
to cows for individual breedings (custom mating pro-
grams) as customized indices, and thus there is a need 
for continued educational efforts.

There is an extensive body of scientific literature 
focused on the process of allocating bulls to cows for 
mating (Allaire, 1980; Jansen and Wilton, 1985; King-
horn, 1998, 2011; Weigel and Lin, 2000; Pryce et al., 
2012; Sun et al., 2013; Cole, 2015). Many AI companies 
provide mating recommendations to their customers as 
part of their services, but the algorithms used are usu-
ally very simple and focus principally on minimization 
of inbreeding. Mate allocation tools that can accom-
modate traits with intermediate optima or nonlinear 
economic values may be of greater value to farmers 
than customized selection indices. Herd-level strategies 
also can accommodate individual preferences relating 
to uniformity or diversity among cows (e.g., Santos et 
al., 2019).

OPPORTUNITIES AND CHALLENGES

What About the Environment?

What Can We Gain by Adding Environmental 
Effects to Genetic Effects? One of the core assump-
tions underlying genetic improvement programs is the 
maxim “P = G + E,” which tells us that the phenotype 
(P) that we observe is the sum of both genetic (G) and 
environmental (E) effects (e.g., Falconer and MacKay, 
1996). Although a selection index focuses specifically 
on genetic effects through its prediction of an individu-
al’s aggregate breeding value, there is growing interest 
among farmers in improved predictions that include 
both genetic and environmental components. Environ-
mental effects are further divided into permanent (e.g., 
geographic location) and temporary (e.g., a particular 
ration formulation) components. Temporary effects are 
very difficult to model because data are very limited, 
but permanent effects can be modeled and used to sup-
port decision-making. For example, most probable pro-
ducing ability adds permanent environmental effects to 
estimates of additive genetic merit to provide estimates 
of an individual’s phenotypic performance (e.g., Chyr 
et al., 1979).

Dunne et al. (2018) recently used best linear unbi-
ased estimates (BLUE) of environmental and manage-
ment effects to determine effects of herd-level factors 
on fertility, milk yield, and survival in Irish dairy 
cattle. Eight herd-level characteristics were assigned 

to quintiles by year, and a multiple-regression analysis 
was used to associate differences in BLUE with differ-
ences in herd performance. Their results showed, for 
example, that 21.75% of the improvement in calving 
interval was due to genetic selection, and 67.89% was 
due to herd-level factors. These results are of interest 
because BLUE are already calculated as part of routine 
genetic evaluations, and they may be useful for identi-
fying both favorable and unfavorable changes in herd-
level performance over time. Interest in better tools for 
on-farm decision support is growing (e.g., Ferris et al., 
2020), and BLUE have potential value for that purpose 
at little additional cost.

There is much speculation—with little data to sup-
port it as yet—that the new on-farm sensors can sup-
port precision estimates of animal performance that 
include information about an animal’s genotype and 
details about the specific environment in which the 
animal is located. These new systems may actually 
produce estimates of temporary environmental effects, 
such as a change in disease state, that are extremely 
variable. It is not clear that such estimates can improve 
probable producing abilities, but they may be valuable 
for identifying animals that need closer human atten-
tion.

Genotype-by-Environment Interactions. The 
selection indices used in the United States have always 
assumed that all animals are performing in the same 
environment. Although this clearly is not true (e.g., 
Bohmanova et al., 2008), reranking of bulls when mod-
els include heat stress effects is generally small (Wright 
and VanRaden, 2015), and the observed effects may 
be related to herd-level factors other than only climate 
(Zwald et al., 2003). There are some major challenges 
associated with the collection of environmental data 
that must be overcome to develop better tools. For 
example, Misztal (2017) noted that genetic evaluations 
for resistance to heat stress are confounded with the 
use of on-farm heat-abatement technologies, which are 
not reported through the milk recording system. If 
more detailed information about cow environments was 
available, then differences between environments could 
be accounted for in the genetic evaluation models. 
Discussion with stakeholders at all levels of the dairy 
production chain are ongoing about the collection of 
much-more-complete information about the farm envi-
ronment, such as detailed descriptors of feeding, hous-
ing, and milking systems.

New Technologies, New Participants,  
and New Pipelines

High-Throughput Phenotyping. It is a well-
known principle in genetic improvement programs that 
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the phenotype is the driver of population improvement 
(Coffey, 2020). New technologies are enabling the large-
scale collection of novel phenotypes, such as milk com-
position and animal behavior, often in real-time (Cole 
et al., 2020). Although such high-throughput phenotyp-
ing has been a feature of plant improvement programs 
for several years (e.g., Fahlgren et al., 2015), it is still in 
its early stages in livestock production systems (Koltes 
et al., 2019). Many of these new devices generate data 
that lack a validated interpretation because their as-
sumptions are not necessarily backed up by direct data 
on the biological phenomena that they are supposed to 
represent. However, there will be growing demand from 
dairy farmers to include these data sources in genetic 
evaluation programs as the available technologies grow 
in number and increase in utility.

Why Do the Sources of Data Matter? As the 
cost of data collection continues to decrease and the 
volume continues to increase, it is reasonable to ask 
if data sources matter. Why not accept any data into 
the national database that farmers want to provide? 
After all, storage is cheap and the cost of data genera-
tion is borne by individual producers, not the genetic 
evaluation center! This is not as practical as it appears 
for many reasons, including animal identification, data 
quality standardization and certification, the presence 
of data silos, and uncertainty about ownership. The 
latter issue is not as straightforward as it might seem 
because farmers do not always own the data stored in 
their on-farm computer systems, and thus cannot nec-
essarily grant permission for its use even if they have 
the tools to deposit them in a remote database.

One of the great strengths of the national milk 
recording system is that it is able to link individual 
animals with the samples collected from those animals 
through the use of unique, permanent identification 
numbers. Many new on-farm sensor systems make use 
of abbreviated cow control numbers that are recycled 
over time and are not unique across herds. Although 
genomic information can be used to identify and cor-
rect errors in pedigrees (Nani et al., 2020), it does not 
currently link samples with the source animal.

Milk recording organizations, such as the NDHIA in 
the United States, provide quality certification services 
to ensure that laboratory measurements are accurate 
and calculations performed on the data are correct 
(e.g., Quality Certification Services, Inc., 2020). The 
methods used to test samples and incorporate the 
resulting observations into genetic improvement and 
herd management systems have been validated in the 
scientific literature for many years (e.g., McCaffree et 
al., 1974; Wiggans and Grossman, 1980; Wiggans and 
Powell, 1980), and national milk recording systems are 

the bedrock of our genetic improvement programs. The 
CDCB has developed a comprehensive program to cer-
tify genomic nominators and genotyping laboratories 
to ensure the accuracy and uniformity of all records 
included in the national genomic evaluation system 
(Carillo et al., 2019), and genotypes are accepted only 
from certified companies. In addition, the International 
Bull Evaluation Service (Philipsson et al., 1986) pro-
vides guidelines for comparing dairy sire evaluations 
across countries and provides data validation services 
for its members, and the International Committee for 
Animal Recording develops guidelines for data collec-
tion and genetic evaluation (International Committee 
for Animal Recording, 2020). Such oversight and stan-
dards do not currently exist for many new phenotyping 
technologies, such as mid-infrared spectral observations 
and mobility data.

Observations collected from new on-farm systems, 
such as feed intake or greenhouse gas monitoring units, 
are typically stored in a proprietary software system 
provided by the vendor. It can be difficult, expensive, 
or impossible to get data out of those individual sys-
tems and into the on-farm management software that 
typically ties into milk recording programs. Producers 
may be surprised to learn that they do not own data 
generated on their farms from their animals (Ellixson 
et al., 2018), a situation also faced by early adopters 
of human-focused devices (Hummel et al., 2020). For 
example, some agreements specify that farmers are 
provided with access to data generated by a system, 
but that ownership remains with the vendor. There is 
a system in place for certifying that crop companies 
comply with certain principles with respect to farm 
data (Ag Data Transparent, 2020), but there is not 
currently an equivalent framework in place for dairy 
data. The International Dairy Data Exchange Network 
(https:​/​/​www​.idden​.org/​) is a newly formed organiza-
tion that facilitates data exchange between dairy equip-
ment manufacturers and dairy industry members, and 
it may become an important conduit for moving data 
between different systems.

Tension Among Commercial and Scientific 
Interests. As discussed above, FS as a trait has very 
high economic value but relatively low reliabilities be-
cause of the small number of records available. Due 
to the current high cost of recording the amount of 
feed consumed by cows each day, it is unlikely that 
the reliability of FS will improve very much. From the 
scientific point of view, this is not necessarily of great 
importance because it is not a methodological problem, 
per se. The calculation of new index weights remains 
a relatively straightforward task regardless of the reli-
abilities of the traits in the index. However, there is the 
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potential for tension between commercial and scientific 
groups because each has different priorities from the 
other. The scientific question is one of correct meth-
odology; however, commercial entities are faced with 
the challenge of making sales in a highly competitive 
marketplace where high reliabilities are important for 
marketing purposes and are required for access to some 
international markets. The addition of FS to NM$ with 
a high weight, which is driven by the costs associated 
with feeding dairy cows, is going to reduce the overall 
reliability of the index, perhaps substantially. This is 
challenging because there may be strong pressure from 
breeding companies to reconsider the assumptions used 
to compute the index. The response from the scientific 
community may seem simple, but intransigence may 
lead to a lack of confidence in the index or the develop-
ment of additional proprietary tools. A framework for 
this conversation currently exists, as shown in Figure 1 
and discussed previously, but it would be a mistake to 
assume that these will be easy conversations with quick 
outcomes.

It is clear from the literature that selection index 
methodology will deliver optimal profitability in the 
long run. However, there is risk associated with the 
selection process for AI companies because breeding 
for long-term objectives affects short-term profitability. 
The tension between short-term gain and long-term 
risk could be addressed by classifying indices ac-
cording to some measure of risk, which would enable 
decision-makers to select the index that best represents 
the trade-offs they are willing to make. However, the 
literature is limited in this area (Rogers, 1990; Wool-
liams and Meuwissen, 1993; Huirne et al., 1997) and 
additional research will be needed to develop suitable 
tools for assessing the long-term risk associated with 
breeding goals.

What Is Needed to Meet the Challenges  
of Tomorrow?

To retain its position as a global leader in genetic 
improvement, the US dairy industry must meet several 
challenges as markets continue to evolve and farm de-
mographics change. This requires a focus on principles 
rather than organizations, which may be in conflict 
with the dairy industry’s trend toward greater consoli-
dation that more closely resembles the closed model of 
swine and poultry breeding than the historical open-
ness of dairy evaluations. Genetic evaluation should be 
structured as a precompetitive service in which data 
are collected and calculations performed by a precom-
petitive entity. Methods are public to allow for peer 
review and open debate to ensure their technical cor-
rectness, and all data are treated consistently. Product 

differentiation is a downstream function; for example, 
an AI company might construct its own selection in-
dex to meet specific needs of its customers by using 
predicted transmitting abilities calculated in the na-
tional evaluation, or farmers may use edited genotypes 
from their cows in a mating program. It is likely that 
some companies will continue to develop proprietary 
evaluations as a matter of competitive advantage, but 
they are likely to have lower reliabilities than national 
evaluations and may not represent random samples of 
the cow population. Genetic evaluations are most ef-
fective when they are treated as a shared resource, but 
there is room for tremendous innovation in how those 
evaluations are used to make decisions. The routine 
introduction of evaluations for new traits by individual 
companies suggests that there is still incentive for them 
to invest in data collection.

The erosion of positions dedicated to dairy extension 
has resulted in the replacement of experts tasked with 
the objective transfer of information from scientists 
to farmers, and has resulted in the widespread use of 
consultants and agribusiness representatives to advise 
farmers (Bernard, 2019). This challenge is not unique 
to the United States (Murphy et al., 2013); farmers 
everywhere need independent information that can be 
used to solve problems, but it is increasingly difficult to 
find. It is perhaps easy to dismiss the dearth of exten-
sion specialists with the comment that there are plenty 
of other experts out there, but that overlooks the issue 
of objective knowledge transfer versus commercial pres-
sures.

CONCLUSIONS

In the past, selection decisions were made by famers 
with input from trusted advisors. Sources of informa-
tion were limited and generally understood by industry 
participants. Changes were gradual, providing time for 
people to adapt at a comfortable pace. There are now 
many sources of information, often lacking independent 
or continuous validation, and their value is not always 
clear. The rate of change is rapid, and farmers need 
objective sources of information more than ever before. 
The best way for the industry to meet the needs of the 
dairy producers, who drive the whole system, is to treat 
genetic evaluations as a shared good for the benefit of 
all.
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