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INTRODUCTION 
Calving ease (CE) affects fertility and calf survival. Jamrozik et al. (2005) found that difficult 
calving (dystocia) was associated with a higher incidence of stillbirth and reduced fertility 
across all parities. Johanson and Berger (2003) found that first parity cows have 4.7 times 
greater incidence of dystocia and Dekkers (1994) found that hard pulls and surgical 
intervention occur at much lower rates for multiparous than for first parity animals. Calving 
ease for Holstein cattle has been evaluated in the United States since 1980 and for Brown 
Swiss since February 2005 (Cole et al., 2005). A sire-maternal grandsire threshold model in 
which calvings for all parities were considered the same trait was introduced in 2003 (Van 
Tassell et al., 2003; Wiggans et al., 2003). The higher frequency of dystocia in first parity 
cows than later parity cows suggests there may be genetic differences for this trait. High 
genetic correlations between first and later parities have been found in many studies (Carnier et 
al., 2000; Cue and Hayes, 1984; Hansen et al., 2004). Genetic correlations for sire effect are 
generally close to one, but for daughter CE or maternal grandsire (MGS) effect, the correlation 
estimates are lower in the range 0.74 to 0.91 (Carnier et al., 2000; Hansen et al., 2004). Most 
studies have found that while genetic correlations are high, direct and maternal CE genetic 
variances are different between first and later parities (Carnier et al., 2000; Dekkers, 1994; 
Johanson and Berger, 2003). Sex of calf significantly affects calving difficulty, but less so for 
multiparous cows (Cue and Hayes, 1984; Groen et al., 1999).  
 
Because CE scores are reported on a categorical scale, modeling of evaluations may be 
difficult. Gibbs sampling or linear modeling may be used to estimate genetic correlations 
(Hansen et al., 2004). Gianola and Foulley (1983) offered a method for linear transformation 
of CE data in order to allow for more traditional evaluation methods. Their transformation 
made the CE scores fit on a semi-normal scale and allowed for modeling in a multi-trait 
evaluation. A transformation of CE data using a Snell scoring allows for comparison of the 
repeatability of the evaluations and stabilizes the variances across subclasses (Klassen et al., 
1990). However, transformation may introduce bias into the evaluation and additional care 
must be used to handle this bias. The purpose of this study was to determine the genetic 
correlation between CE in first and later lactations for sire and MGS effects in US data.  
 
MATERIAL AND METHODS 
Data. To create datasets of manageable size, five samples of approximately 250,000 were 
selected from over 13 million calvings since 1980 in the national CE database. The samples 
contained records from the 2600 bulls most frequently occurring as a sire or MGS. Scores 
were on a 1 to 5 scale from easy or unobserved to extreme difficulty. Herd-years were required 
to have at least 20 calvings. The number of herds ranged from 721 to 860. Scores were 
transformed to a linear scale where each transformed value was the standard normal deviate at 
the midpoint of the probability for the category. Probabilities were calculated separately by sex 
of calf and for first and later parity. 
 
Model. The model included fixed year-season of calving (two seasons per year starting in 
April and October), sex of calf within parity, and birth year for sire and MGS effects and 
random herd-year, sire, MGS, and error effects. Several birth years were combined for years 
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before 1985. Third and greater parities were grouped together. Calving ease in first and later 
parities was analyzed as two correlated traits. 
 
Variance Component Estimation. Both Average Information REML (AIREML) on the 
transformed data and Bayesian estimation through Gibbs Sampling on the original scores were 
used to estimate (co)variance components. The Gibbs sampler was continued until the values 
of the thresholds stopped increasing, then every tenth sample from the last 10,000 was 
included in the summary. 
 
RESULTS AND DISCUSSION 
The AIREML estimation converged quickly. The Gibbs sampling required over 20,000 
samples for the thresholds to stabilize. Table 1 shows fairly close correspondence between 
Bayesian and AIREML analyses for genetic correlations between first and later parity effects 
for both sire and MGS. There was considerable between-sample variation for the sire 
correlations. The MGS estimates were lower and more stable. The average correlation for 
MGS of approximately 0.8 indicates substantial genetic difference by parity. Table 2 shows 
correlations from the Bayesian analysis of approximately 0.5 between sire and MGS effects for 
all parity combinations. 
 
Table 1. Genetic correlations between first and later parity calving ease effects for sire 
and maternal grandsire (MGS) 
 

Estimation Procedure 
Effect 

Sampling 
Group Bayesian AIREML 

Sire 0 0.958 0.969 
 2 0.881 0.840 
 4 0.845 0.842 
 6 0.992 0.993 
 8 0.992 0.941 
 Mean  0.934 0.917 
    
MGS 0 0.807 0.822 
 2 0.793 0.815 
 4 0.767 0.788 
 6 0.835 0.828 
 8 0.773 0.778 
 Mean  0.795 0.806 

 
Table 2. Correlations between sire and maternal grandsire (MGS) parity effects 
 

MGS  
 Parity 1 2+ 

1 0.551 0.518 Sire 
2 + 0.513 0.547 

 
Variance component estimates are presented in Table 3. They are expressed relative to the 
residual variance for first parity. This scaling makes them comparable to the (co)variance 
components currently used (Wiggans et al., 2003), which were 0.438 for herd-year, slightly 
higher than those in Table 3, and 0.0223 for sire, which was slightly lower. The biggest 
difference was 0.0159 for MGS. The value in Table 3 for first parity is 0.033, which is twice as 
large, and larger than the value for sire. The variances for later parities were lower than for 
first for both sire and MGS. For MGS, the variance for later parities was about half that for 
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first. Table 4 shows that the thresholds were lower for later parity, which is consistent with 
their lower variance. These differences in variance by parity, along with the correlation of 
approximately 0.8, indicate the value of modeling the MGS CE effect separately by parity.  
 
Table 3. Variances relative to parity 1 residual 
 

Animal Parity Variance SD 
1 0.026 0.004 Sire 
2 + 0.021 0.001 
1 0.033 0.003 Maternal grandsire 
2 + 0.016 0.002 

Residual 2 + 0.921 0.068 
1 0.346 0.012 Herd-year 
2 + 0.308 0.018 

 
Table 4. Mean thresholds across 5 samples 
 

 Threshold 
Parity 3 4 
1 2.42± 0.10 3.71± 0.18 
2 + 2.27± 0.09 3.24± 0.12 

Thresholds 1 and 2 set to 0 and 1 respectively 
 
CONCLUSION 
Correlations between first and later parity were high for sire, but were below 0.8 for MGS. 
Variances for the later parity group were less than for first parity, particularly for MGS. 
Evaluations, particularly for MGS can be improved by treating first and later parities as 
correlated traits. A national implementation of a bivariate threshold model should be 
considered. A non-Markov Chain Monte Carlo (MCMC) implementation following the 
methodology of Gianola and Foulley (1983), where thresholds are estimated, would be 
complicated. With thresholds known, such implementation can be much simpler by 
generalization of formulas by Quaas (1996). An MCMC can be used with variances and 
thresholds fixed where sampling involves only liabilities and solutions (Lee et al., 2002). In 
that study, a trivariate analysis involving about 500,000 animals required about 10,000 samples 
for satisfactory convergence of breeding values. The number may be even smaller with the 
sire-MGS. The computer program THRGIBBS1F90 completed 600 samples/day when 
processing 6 million animals thus required about 2 weeks. Program optimization, a faster 
computer and possibly implementation of parallel processing could reduce the total computing 
time to a few days. A linear model on the transformed scores also is possible, but the impact of 
the approximation necessary to apply a linear model might be unacceptably high. Additional 
research is required to implement separate genetic effects for first and later parities. 
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