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Abstract

Whole-genome re-sequencing, alignment and annotation analyses were undertaken for

12 sires representing four important cattle breeds in Brazil: Guzerat (multi-purpose), Gyr,

Girolando and Holstein (dairy production). A total of approximately 4.3 billion reads from an

Illumina HiSeq 2000 sequencer generated for each animal 10.7 to 16.4-fold genome cover-

age. A total of 27,441,279 single nucleotide variations (SNVs) and 3,828,041 insertions/

deletions (InDels) were detected in the samples, of which 2,557,670 SNVs and 883,219

InDels were novel. The submission of these genetic variants to the dbSNP database signifi-

cantly increased the number of known variants, particularly for the indicine genome. The

concordance rate between genotypes obtained using the Bovine HD BeadChip array and

the same variants identified by sequencing was about 99.05%. The annotation of variants

identified numerous non-synonymous SNVs and frameshift InDels which could affect phe-

notypic variation. Functional enrichment analysis was performed and revealed that variants

in the olfactory transduction pathway was over represented in all four cattle breeds, while

the ECM-receptor interaction pathway was over represented in Girolando and Guzerat

breeds, the ABC transporters pathway was over represented only in Holstein breed, and the

metabolic pathways was over represented only in Gyr breed. The genetic variants discov-

ered here provide a rich resource to help identify potential genomic markers and their asso-

ciated molecular mechanisms that impact economically important traits for Gyr, Girolando,

Guzerat and Holstein breeding programs.
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Introduction

Brazil has the world’s largest commercial cattle herd with around 215.2 million head in 2015

according to the agricultural census [1], from which about 80% is estimated to be composed of

purebred and crossbreed Bos primigenius indicus animals. The vast majority of Brazilian dairy

cows are extensively grazed in challenging environments where they must convert low-quality

forages into high-quality milk [2]. Due to the naturally occurring temperature, disease and

nutritional stresses, indicine breeds are widely used in Brazilian cattle production systems,

because of their adaptability towards the tropical climate and extensive production systems.

Guzerat and Gyr, which were introduced from India, are important indicine cattle breeds

for milk and meat production in Brazil. The Guzerat breed was introduced in Brazil at the end

of the 19th century and currently ranks fifth in numbers of animals among indicine cattle

breeds in the country [3]. The Guzerat breed is recognized for traits such as resistance to para-

sites, heat tolerance and willingness to consume forage with low nutritional value, all of which

are important to its adaptation to adverse tropical environments. This breed was included in

the FAO list of domestic animal genetic resources to be conserved by management [4] due to

their potential for production in the tropics and their small effective population size.

Considered to be a dual-purpose breed, Guzerat cattle have been widely used in both pure-

bred and crossbreeding schemes to produce efficient dairy cows and beef calves. The National

Breeding Program for the Improvement of Guzerat Dairy Cattle was implemented in 1994 to

improve milk production, conformation, and management traits through selection based on

genetic evaluations through progeny testing and by utilizing multiple ovulation and embryo

transfer nucleus schemes [5].

The Gyr breed is the indicine breed with the highest milk yield and it is recognized for its

robustness, adaptability to high-temperature conditions and resistance to parasites common

in tropical climates. The National Breeding Program of the Dairy Gyr was established in 1985

in Brazil aiming for the genetic improvement of the breed through the identification and selec-

tion of genetically superior bulls for milk production (milk, fat, protein and total solids), con-

formation and management traits [6]. Gyr animals are present in more than 80% of Brazilian

dairy herds either as purebreds or in stabilized crosses with Holstein (Bos primigenius taurus)
resulting in the Girolando composite breed [7]. Crossbreeding has been used to generate cows

that would combine the high milk production capacity of Holsteins and the adaptability to

tropical conditions of the Gyr breed. Crossbreds Girolando cattle are noteworthy for excellent

productivity, high fertility indexes and good vigor. Due to these advantages, Girolando became

the predominant cattle breed on the majority of Brazilian dairy farms in terms of numbers of

animals.

A considerable number of genetic variants, including single nucleotide variations (SNVs),

insertions/deletions (InDels), and structural variations have been identified across the cattle

genome, as a result of the Bovine Genome Sequencing [8], HapMap [9], and the 1000 bull

genomes projects [10]. These projects have helped to demonstrate the potential of cattle geno-

mic research by increasing our knowledge of mammalian evolution and biology. Recent

advances in next-generation sequencing (NGS) technology and sequence analysis tools have

allowed whole genome re-sequencing to become a feasible tool to quickly, efficiently and accu-

rately identify genetic variants segregating in a population. The identification of all genetic

variants in the genome is a crucial first step for discovery of causal variants associated with

complex traits in livestock species [11, 12]. Whole-genome re-sequencing has now been exten-

sively used to identify genomic variants in a number of cattle breeds [13–21]. However, most

studies have concentrated on taurine breeds, exacerbating the deficiency of knowledge for

indicine genetic resources.
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About 99.71 million single nucleotide variants (SNV) and 8.36 million InDels across the

bovine genome have as of February 2017 been published in the dbSNP database (http://www.

ncbi.nlm.nih.gov/snp/). Among these, only 4.38 million SNPs and three InDels have been

deposited for indicine breeds. Furthermore, the SNP chips currently used for genotyping are

biased toward variants useful for characterizing taurine breeds, imposing limitations for

genome-wide studies about genetic structure and diversity of indicine breeds [22]. This bias

strongly affects the estimates obtained from the data [23–25]. Nevertheless, commercially

available SNP chips of low- and medium-density markers specific for indicine breeds were

developed by GeneSeek Inc. (Lincoln, NE), but these still suffer from ascertainment bias. How-

ever, the whole genome resequencing of single animals can be used to remove that bias, as well

as identifying rare putative functional variants and detecting structural variants [10, 12, 17].

In humans, InDels have received far less attention than other variants because they are one

of the least well characterized and understood variants across the genome, although several

lines of evidence indicated that such variation is a major determinant of human biological

diversity [26, 27]. Similarly in cattle, InDels remain less studied than SNVs, despite the fact

they are the second most abundant type of genetic variant following SNVs. Although several

studies identified a high number of InDels in cattle by next generation sequencing, it is appar-

ent that most of them were not submitted to the dbSNP database. InDels in coding regions can

significantly impact gene expression, particularly through frameshifts resulting in prematurely

terminated protein products or changed splice variants.

The aim of this study was to detect and make publicly available genome-wide SNVs and

InDels present in Gyr, Girolando, Guzerat, and Holstein breeds. These results will contribute

to the dbSNP database and will provide an updated genomic resource for genome-wide associ-

ation studies and genomic selection in indicine cattle, which will help increase knowledge of

the underlying genetic architecture of quantitative traits. In addition, our findings could

improve comparative genomic studies between Bos primigenius taurus and Bos primigenius
indicus breeds, providing new insights into the history of divergence of those groups.

Materials and methods

Ethics statement

Gyr and Guzerat DNA was extracted from semen, while Girolando and Holstein DNA was

extracted from the semen or blood samples, bought from an artificial insemination center and

therefore, no specific ethical approval is needed (Brazil law number 11794, from October 8th,

2008, Chapter 1, Art. 3, paragraph III). All the samples were obtained with the consent of the

artificial insemination center to use for research.

DNA sampling, library construction and sequencing

A total of 12 animals (two Gyr, three Girolando, two Guzerat and five Holstein) were selected

for sequencing according to having high numbers of daughters and due to the role of their line-

age within each breed. Gyr and Guzerat genomic DNA was extracted from semen samples

using a modified phenol/chloroform method described shortly. Samples were washed with lysis

buffer to remove semen diluents. After that, samples were incubated with extraction buffer con-

taining dithiothreitol 10% (DTT) and RNase for 2h. Pellets were incubated overnight with

saline-proteinase K buffer and protein was removed by subsequent phenol-chloroform treat-

ment. Girolando ( Holstein and Gyr) and Holstein DNA was extracted from the semen or

blood samples using the DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA), following

manufacturer’s protocol. Quality and concentration of DNA for all samples were determined

by NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

SNVs and InDels identified in cattle
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Paired-end and mate-paired libraries with insert sizes of 200 bp (Holstein samples) and

500 bp (Gyr, Guzerat, and Girolando samples) were prepared following Illumina protocols to

produces read lengths of 2 x 100 bp and 200 bp. Each library was high-throughput sequenced

on a HiSeq 2000 sequencer (Illumina Inc., San Diego, CA, USA), following manufacturer

guidelines.

Short read mapping and variant calling

The UMD 3.1 bovine genome assembly (taurine reference) was used as the reference for the

29 bovine autosomes and the X chromosome whereas the Btau4.6.1 assembly was used as the

reference genome sequence for the Y chromosome. Sequencing reads were mapped to the ref-

erence assembly using the Burrows-Wheeler Aligner tool (BWA, version 0.7.10-r789) with

default parameters [28].

Picard tools (version 1.54) (http://broadinstitute.github.io/picard/) were used to eliminate

PCR duplicates. Variant calling was conducted with Freebayes (https://github.com/ekg/

freebayes). All SNVs and InDels were identified as differences from the reference genome

sequences. The resulting variant list obtained for each animal were filtered by vcffilter (https://

github.com/vcflib/vcflib) in order to remove SNVs and InDels with quality scores lower than

30 or coverage lower than 7.

Annotation of SNVs and InDels

The SNVs and InDels were classified according to their potential function using the Ensembl

Variant Effect Predictor tool (VEP, version 84) [29], except those mapped onto Y chromosome

because VEP contained only the bovine genome assembly UMD 3.1. Variants with the non-

reference allele present in the dbSNP database [30] were classified as “known” and variants

described herein for the first time were classified as “novel”. The Venn diagrams representing

SNVs and InDels were generated using the R environment (VennDiagram package, version

1.6.17).

The average ratios of homozygous versus heterozygous SNVs and InDels were calculated

for Gyr, Girolando and Guzerat breeds, using RTG tools (http://realtimegenomics.com/

products/rtg-tools/). The transition-to-transversion ratio (Ti/Tv), which is used as an indicator

of potential sequencing errors, was calculated using the vcf-stats tool (http://vcftools.source

forge.net/perl_module.html#vcf-stats).

Functional enrichment analysis

The Database for Annotation, Visualization, and Integrated Discovery tool (DAVID, version

6.8) [31, 32] was used for functional enrichment analysis using the lists of genes that had vari-

ants classified by the VEP tool as high (splice acceptor variant, splice donor variant, stop

gained, frameshift variant, stop lost, and start lost) or moderate (inframe insertion, inframe

deletion, missense variant, and protein altering variant) severity of consequences in tran-

scripts. All annotated genes in the taurine genome were used as background. Gene Ontology

(GO) biological process, GO cellular component and GO molecular function annotation data

sets were used for functional enrichment analysis considering a 10% false discovery rate (FDR)

threshold for significance.

Validation of SNVs using BovineHD BeadChip array

We evaluated the genotype concordance between the SNVs and SNP panel genotype data of

Gyr_1, Gyr_2, Girolando_1, Girolando_2, Girolando_3, and Guzerat_2 samples to verify and
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validate the quality of the identified SNVs. The genotype quality control (QC) was not carried

out. A python script was used to compare the SNV calling to the Bovine HD BeadChip array

(Illumina, San Diego, USA). The script stored the final report file output from the Illumina

Bead Express software used with the BovineHD BeadChip and compared each called locus to

its counterpart in the variant calling format (VCF) file containing the SNV calling from the

whole-genome sequencing.

Results and discussion

Sequencing and variant detection

Approximately 4.3 billion reads were generated with an Illumina HiSeq 2000 sequencer,

which for each of seven bulls represented a 10.76 to 16.46-fold coverage of the cattle genome

(2,713,722,480 bp of size). A total of 98.78% sequence reads could be mapped to the UMD3.1

bovine genome reference assembly (Table 1). Sequencing at 15-fold coverage of the genome

has been reported to enable identification of around 75% of heterozygote variants and an

increase in sequence depth significantly improves the accuracy and sensitivity of variant iden-

tification [33].

A total of 27.441.279 SNVs (58.09% from Gyr, 48.42% from Girolando, 61.01% from

Guzerat, and 32.59% from Holstein) were identified in the samples (Table 2), of which

2,557,670 (37.96% Gyr, 24.51% Girolando, 34.96% Guzerat, and 24.48% Holstein) were novel,

while the remainder of the SNVs had been previously uploaded to the dbSNP database. Given

the large number of novel variants, these results indicate that a high number of genetic variants

remain to be identified in the bovine genome. It is important to note that the lower proportion

of novel variants discovered in the Holstein breed was expected, because its genome has

already been extensively re-sequenced [10, 12, 17, 34].

Table 1. Summary of sequencing and assembly results for the seven bulls representing Gyr, Girolando, Guzerat and Holstein cattle breeds.

Sample Total reads Mapped reads Coverage

Gyr_1 407,432,426 98.98% 15.01

Gyr_2 420,236,440 98.75% 15.49

Girolando_1 297,636,324 99.07% 10.97

Girolando_2 446,757,536 98.90% 16.46

Girolando_3 345,972,522 99.05% 12.75

Guzerat_1 352,056,808 98.97% 12.97

Guzerat_2 445,595,922 98.88% 16.42

Holstein_1 338,028,986 99.02% 12.46

Holstein_2 326,956,582 99.71% 12.05

Holstein_3 380,512,652 99.60% 14.02

Holstein_4 291,946,026 99.71% 10.76

Holstein_5 304,111,802 94.35% 11.21

https://doi.org/10.1371/journal.pone.0173954.t001

Table 2. Summary of SNVs and InDels identified in this study for Gyr, Girolando, Guzerat and Holstein breeds.

Breed SNVs InDels

total novel total novel

Gyr 15,941,804 970,823 1,833,387 342,899

Girolando 13,286,669 626,921 1,413,047 227,176

Guzerat 16,743,392 894,177 1,975,563 370,095

Holstein 8,944,009 626,269 1,348,564 228,835

https://doi.org/10.1371/journal.pone.0173954.t002
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In recent years, the improvement of high-throughput sequencing platforms and sequence

analysis tools has facilitated the identification and characterization of genetic variants in many

cattle breeds, increasing the number of variants available in the dbSNP. Liao et al. [20] re-

sequenced 14 Gyr animals and identified around ten million SNPs and six hundred thousand

InDels, of which 62.34% and 83.62%, respectively, were novel at that time. In this study, we

also identified a high number of variants in Gyr breed, of which 6.09% of SNVs and 18.70% of

InDels were novel according to the dbSNP.

A total of 5,198,306 (32.61%) SNVs were common across the two Gyr samples, 1,268,464

(9.55%) common across three Girolando samples, 7,010,781 (41.87%) common across two

Guzerat samples, and 590,785 (6.60%) common across five Holstein DNA samples. A total of

3,828,041 InDels (47.89% Gyr, 36.91% Girolando, 51.61% Guzerat, and 35.23% Holstein) were

identified, of which 883,219 (38.82% Gyr, 25.72% Girolando, 41.90% Guzerat, and 25.91%

Holstein) were novel (Table 2).

A total of 430,501 (23.48%) InDels were common across Gyr, 85,638 (6.06%) common

across Girolando, 585,825 (29.65%) common across Guzerat, and 72,103 (5.35%) common

across Holstein samples. The high number of unique genetic variants identified for each ani-

mal within the same breed shows the importance of re-sequencing to identify novel variants

for monitoring genetic diversity in the cattle breeds and for developing strategies to prevent

some eventual loss of genetic variability.

The length of InDels ranged from -44 bp (deletion) to +30 (insertion) bp in Holstein breed,

-43 bp (deletion) to +29 bp (insertion) in Gyr breed, and -43 bp (deletion) to +29 bp (inser-

tion) for Guzerat and Girolando breeds. Moreover, most of the identified InDels have lengths

less than 4 bp (87.72% Gyr, 86.10% Girolando, 87.94% Guzerat and 88.89% Holstein InDels)

(Fig 1).

The number of deletions discovered was slightly lower than the number of insertions, dem-

onstrated by insertion/deletion ratios (Table 3). The higher average ratio of heterozygous ver-

sus homozygous SNVs and InDels observed in Girolando breed (Table 3) can be explained by

its composite breed makeup, since it comprises admixed Holstein (taurine) and Gyr (indicine)

genomes.

Fig 1. Distribution of InDel lengths (bp) for Gyr, Girolando, Guzerat, and Holstein cattle breeds.

https://doi.org/10.1371/journal.pone.0173954.g001
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The transition-to-transversion (Ti/Tv) ratio was calculated for each sample (Table 3) as an

indicator of potential random sequencing errors. The Ti/Tv average ratio was 2.20 for all sam-

ples, which indicated a high accuracy for most of the variants identified in this study. Our

results are supported by previous studies in bovine, which found Ti/Tv ratios of approximately

2.2 in Hanwoo, Yanbian, Jeju Heugu, Goldwyn, Black Angus, and Holstein breeds [17, 18, 35].

All the SNVs and InDels identified in this study were submitted in variant calling format

(vcf) to the dbSNP database under the handle name EMBRAPA-CNPGL-LBGA.

The density of variants within each chromosome was proportional to chromosome length,

except for the X and Y chromosomes which showed a low number of variants identified (S1

Table). These findings were expected because sex chromosomes are haploid in males, resulting

in a sequencing depth about half that of the autosomes and, as consequence, a lower rate of

variant identification [15, 16]. In addition, some studies have suggested that selection resulted

in lower observed retention of mutant variants on genes located on sex chromosomes because

of the effects of exposure to deleterious recessive alleles in hemizygous conditions [15, 36, 37].

A high number of SNVs and InDels were identified as being shared among indicine breeds

(Fig 2). A total of 2,825,991 (10.30%) SNVs were common to all four breeds while the SNVs

with no overlap with any other breed (i.e. breed-specific) represented 11.42% in Gyr, 7.03% in

Girolando, 13.47% in Guzerat, and 8.82% in Holstein breeds. The number of InDels shared

among all four breeds was 242,690 (6.34%), while the proportion of breed-specific InDels was

14.41% in Gyr, 7.90% in Girolando, 17.14% in Guzerat, and 15.12% in Holstein (Fig 2).

Breed-specific variants could be useful for further studies about breed characterization,

while overlapping variants may reflect closer relations between breeds. Although the Gyr and

Holstein breeds were used to develop the Girolando composite breed ( Holstein and Gyr), we

identified a closer overlap of variants common to Gyr and Guzerat (11,016,988 SNVs and

1,045,348 InDels), both indicine breeds than those common to Girolando and Gyr (8,236,613

SNVs and 733,598 InDels) or to Girolando and Holstein (5,391,848 SNVs and 564,311 InDels)

breeds. Also, the number of genetic variants shared among Girolando, Gyr, and Holstein

breeds reflect the current genetic state of this Girolando population, which appears to be

approximately Gyr and Holstein. Apparently, the Girolando breed composition is changing

since the breed was formed and the selection pressure has keeping the most variants for Gyr

breed in this environment, maybe due to its additional advantages in tropical climates when

Table 3. Description of insertion-to-deletion, heterozygous-to-homozygous (Het/Hom) and transition-to-transversion (Ti/Tv) ratios for InDels and

SNVs.

Sample Insertions/Deletions SNVs

Insertion/Deletion Insertion Het/Hom Deletion Het/Hom InDel Het/Hom Total Het/Hom Ti/Tv Het/Hom

Gyr_1 0.94 1.05 1.38 1.70 1.26 2.33 1.23

Gyr_2 0.92 1.08 1.42 1.66 1.37 2.37 1.34

Girolando_1 0.96 2.47 3.58 4.26 3.74 2.37 3.73

Girolando_2 0.94 2.49 3.51 3.78 4.01 2.30 4.02

Girolando_3 0.97 1.91 2.56 3.15 2.65 2.28 2.65

Guzerat_1 0.95 1.09 1.46 1.84 1.32 2.34 1.29

Guzerat_2 0.94 1.19 1.54 1.92 1.39 2.33 1.35

Holstein_1 0.98 1.34 1.63 2.06 1.68 2.06 1.68

Holstein_2 0.99 1.37 1.71 2.11 1.76 2.12 1.76

Holstein_3 0.98 1.37 1.71 2.05 1.79 2.16 1.79

Holstein_4 1.00 1.49 1.91 2.33 1.89 2.12 1.88

Holstein_5 0.96 0.85 0.94 1.19 0.95 1.64 0.93

https://doi.org/10.1371/journal.pone.0173954.t003
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compared to Holsteins breed, such as adaptability to high-temperature conditions and resis-

tance to parasites.

Annotation of SNVs and InDels

Identified SNVs and InDels (Table 4) were annotated into functional categories using the VEP

tool, except those that were mapped on the Y chromosome (S2 Table). Variant annotation

indicated that variants may be functionally relevant for each breed. The number of variant

annotations was higher than the number of SNVs and InDels identified, because the same

genetic variant can have more than one annotation (Table 4).

Most variants were identified in intergenic or intronic, while a small number of variants

were annotated as being in genic regions including exons, untranslated regions (5’UTR and

3’UTR) and splice sites (Table 4). A significant number of variants were predicted to be delete-

rious in Gyr (7,654), Girolando (7,022), Guzerat (7,743), and Holstein (4,699) cattle breeds.

In regard to variants annotated on the Y chromosome (S2 Table), most variants were

mapped to intergenic regions (87.31% Gyr, 88.34% Girolando, 88.42% Guzerat, and 92%

Holstein), while a small number of variants were annotated in genic regions, mainly in coding

regions (0.71% Gyr, 0.63% Girolando, 0.47% Guzerat, and 0.13% Holstein). This lower

representation in coding regions for the Y chromosome compared to the corresponding

Fig 2. Venn diagram showing the overlap of all identified SNVs and InDels in the Gyr, Girolando,

Guzerat, and Holstein genomes.

https://doi.org/10.1371/journal.pone.0173954.g002
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representation in autosomal variants only reflects the fewer number of genes present on the Y

when compared to autosomes. The identification of variants in genes from the Y chromosome

is important for breeding programs, since these could be responsible for fertility-related traits

[38].

Functional enrichment analysis

Genetic variants classified by the VEP tool as high (disruptive impact in the protein causing

protein truncation, loss of function or triggering nonsense mediated decay) or moderate (non-

disruptive variant that could change protein effectiveness) severity consequences in transcripts

provide a useful resource to be used in genetic analysis of phenotypic differences observed

among these four breeds, mainly because these types of variants can influence economically

important traits. For this reason, following variant annotation, functional enrichment analysis

was performed using the DAVID tool. The analysis set comprised 11,940 Ensembl IDs from

Gyr, 11,268 from Girolando, 11,910 from Guzerat and 7,617 from Holstein. Gene Ontology

enrichment analysis revealed that three GO biological processes (GO:0007186~G-protein cou-

pled receptor signaling pathway, GO:0050907~detection of chemical stimulus involved in sen-

sory perception, and GO:0007608~sensory perception of smell), five GO molecular functions

(GO:0004984~olfactory receptor activity, GO:0004930~G-protein coupled receptor activity,

GO:0004888~transmembrane signaling receptor activity, GO:0005549~odorant binding, and

GO:0005524~ATP binding) and two GO cellular components (GO:0016021~integral compo-

nent of membrane and GO:0005886~plasma membrane) were enriched in all four breeds

studied, considering a 10% FDR threshold for significance (Table 5).

Table 4. Summary of functional classification of SNVs and InDels identified in Gyr, Girolando, Guzerat and Holstein breeds. Some SNVs and InDels

are represented in multiple categories.

Classification Gyr Girolando Guzerat Holstein

Splice acceptor variant 385 348 376 276

Splice donor variant 368 346 370 225

Stop gained 535 481 598 534

Frameshift variant 1,479 1,364 1,491 987

Stop lost 47 35 42 27

Start lost 107 100 102 56

Inframe insertion 277 235 238 92

Inframe deletion 358 306 302 153

Missense variant 53,519 48,073 54,433 26,931

Protein altering variant 74 72 66 50

Splice region variant 15,337 12,870 15,172 6,620

Synonymous variant 78,030 66,437 77,527 27,820

Stop retained variant 52 46 51 26

Coding sequence variant 396 360 366 221

Mature miRNA variant 120 111 132 81

5_prime_UTR_variant 8,643 7,518 7,945 2,245

3_prime_UTR_variant 42,266 36,082 42,233 19,609

Non-coding transcript exon variant 8,260 7,019 8,610 4,523

Intron variant 5,648,353 4,701,181 5,845,387 2,956,134

Non-coding transcript variant 8,628 7,368 8,979 4,710

Upstream gene variant 893,243 765,141 892,485 458,765

Downstream gene variant 899,298 766,050 910,644 457,038

Intergenic variant 12,442,695 10,192,691 13,244,468 7,556,938

https://doi.org/10.1371/journal.pone.0173954.t004
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Four KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were identified as

being over represented by DAVID. The olfactory transduction pathway (bta04740) was over

represented in all four cattle breeds, the ECM-receptor interaction pathway (bta04512) was

over represented in Girolando and Guzerat breeds, while the ABC transporters (bta02010) and

the metabolic pathways (bta01100) were over represented only in Holstein and Gyr, respec-

tively (Table 5).

Olfactory transduction pathways act in the perception of odor through olfactory receptors

and biochemical signaling events, which influences food preference and food consumption

[39]. Zhan et al. [15] identified enrichment bias for this pathway when re-sequencing a Hol-

stein Friesian bull and performing an enrichment analysis for genes with nonsynonymous

SNVs. Do et al. [40] reported that the olfactory transduction pathway is associated with

Table 5. Gene Ontology (GO) terms and KEGG pathways enriched (FDR<0.10) in Gyr, Girolando, Guzerat and Holstein breeds.

Terms Gyr Girolando Guzerat Holstein

Genes FDR Genes FDR Genes FDR Genes FDR

GO Biological Process

GO:0007186 G-protein coupled receptor signaling pathway 612 5.35E-

25

615 6.38E-

37

632 4.24E-

34

531 7.81E-63

GO:0007608 Sensory perception of smell 173 1.24E-

09

173 6.66E-

13

182 1.47E-

15

153 1.01E-21

GO:0050907 Detection of chemical stimulus involved in sensory

perception

135 1.84E-

09

135 2.88E-

12

137 7.68E-

11

124 3.30E-22

GO:0050911 Detection of chemical stimulus involved in sensory

perception of smell

- - 45 0.03039 46 0.05485 45 8.99E-09

GO:0006508 Proteolysis 139 0.02278 - - - - - -

GO:0007165 Signal transduction 297 0.02108 - - - - 207 0.01465

GO Cellular Component

GO:0016021 Integral component of membrane 2878 2.32E-

11

2736 5.33E-

13

2874 5.97E-

11

1929 3.42E-15

GO:0005886 Plasma membrane 1643 1.17E-

18

1618 2.55E-

31

1680 5.21E-

27

1192 6.07E-34

GO:0005887 Integral component of plasma membrane 589 0.00130 - - - - - -

GO:0045095 Keratin filament - - 48 0.02374 - - - -

GO Molecular Function

GO:0004984 Olfactory receptor activity 661 2.86E-

36

681 3.35E-

59

694 7.46E-

55

613 1.51E-

102

GO:0004930 G-protein coupled receptor activity 764 5.20E-

32

775 9.03E-

49

796 1.60E-

46

672 3.52E-83

GO:0004888 Transmembrane signaling receptor activity 165 3.78E-

11

163 1.19E-

12

167 2.98E-

12

144 1.48E-20

GO:0005549 Odorant binding 143 3.36E-

07

143 1.68E-

09

145 3.69E-

08

125 8.74E-16

GO:0005524 ATP binding 871 6.08E-

05

812 0.05890 880 5.89E-

06

621 4.21E-09

GO:0042626 ATPase activity, coupled to transmembrane movement of

substances

- - - - - - 36 0.00680

KEGG Pathway

bta04740 Olfactory transduction 705 0.00217 723 7.39E-

12

736 7.06E-

09

656 1.51E-50

bta04512 ECM-receptor interaction - - 68 0.10062 71 0.04028 - -

bta02010 ABC transporters - - - - - - 33 0.00254

bta01100 Metabolic pathways 812 0.02570 - - - - - -

https://doi.org/10.1371/journal.pone.0173954.t005
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residual feed intake in pigs. Although the novel variants identified in this study were spread

throughout the genome, we identified a high number of novel variants clustered on genes

from BTA12 and BTA15 in all four cattle breeds, which could be explained by the presence of

gene families that creates problems in the mapping, resulting in erroneous identification of

genetic variation within these related genes [12]. The olfactory receptor genes comprise the

largest multigene family in vertebrates [41], with more than one thousand coding genes

organized in clusters on 26 cattle chromosomes, of which BTA15 has the largest number of

mapped olfactory receptor functional genes (n = 251) [42]. The genes from BTA12 enriched

with novel variants comprised multidrug resistance-associated protein 4 genes (LOC100299180,

LOC509854, LOC515333, LOC522174, LOC523126, and LOC53043), while BTA15 showed

the olfactory receptor genes (LOC100299084,LOC100336901, LOC104968619, LOC508180,

LOC509025, LOC521081, LOC615051, LOC787385, LOC787428, LOC789288, LOC789293,

LOC789300, LOC790274, LOC100299808, OR4C15, OR5F1, and OR8K1) contained a large num-

ber of novel variants.

The extracellular matrix (ECM) consists of a complex of structural and functional macro-

molecules with an important role in tissue and organ morphogenesis and in the maintenance

of cell and tissue structure and function. It can directly or indirectly influence specific cellular

activities such as differentiation, adhesion, proliferation, and migration. Lee et al. [43] identi-

fied the ECM-receptor interaction pathway enriched in expression analyses from omental,

subcutaneous and intramuscular adipose tissues in cattle, acting also as a sub-pathway of other

enriched pathways. Gao et al. [44] reported that the ECM-receptor interaction pathway is tran-

scriptionally regulated throughout the onset of lactation in Holstein cows.

The ATP-binding cassette (ABC) transporters is one of the largest protein families in pro-

karyotes and eukaryotes. They couple ATP hydrolysis to active transport of a wide variety of

substrates such as sugars, peptides, proteins, lipids, sterols, ions, and drugs. Prokaryotic antibi-

otic resistance and eukaryotic multi-drug resistance is associated with ABC transporters,

which acts as a modulator of drug absorption and distribution [45, 46].

Over-represented KEGG pathways and GO terms and results should be carefully inter-

preted because of the small sample size used in this study. However, these results provide

important genomic information to investigate the genetic mechanisms underlying phenotypic

differences and similarities among these breeds.

Validation of SNVs using Bovine HD BeadChip array

The quality of SNVs identified in this study was evaluated by comparison of the concordance

between the genotypes obtained from Illumina BovineHD BeadChip array for the Gyr_1,

Gyr_2, Girolando_1, Girolando_2, Girolando_3, and Guzerat_2 samples. Around 98.46–

99.45% of detectable array SNPs were identified as SNV by sequencing, which indicated that

most of the SNVs were correctly called in this study. Table 6 shows the percentage of SNVs

Table 6. Comparison of BovineHD BeadChip array genotypes to sequencing SNVs.

Sample Sequencing calls* Concordant Discordant

Gyr_1 99.42% 267,258 1,558

Gyr_2 99.45% 196,537 1,091

Girolando_1 98.46% 145,365 2,274

Girolando_2 98.92% 153,157 1,670

Girolando_3 98.66% 185,638 2,527

Guzerat_2 99.39% 247,931 1,526

*Percentage of detectable array SNPs that were identified as SNV by sequencing

https://doi.org/10.1371/journal.pone.0173954.t006
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from the Bovine HD BeadChip array that are also present in the SNV calling and the concor-

dance between array and whole-genome sequence genotypes.

Conclusion

In this study, we presented an extensive genome analysis of Gyr, Girolando, Guzerat and Hol-

stein breeds following whole-genome re-sequencing using an Illumina HiSeq 2000 sequencing

platform, which lead to identification of 27,441,279 SNVs and 3,828,041InDels in the cattle

genome. The high number of genetic variants identified for each breed is important to moni-

toring genetic diversity and for developing strategies to prevent an eventual loss of genetic var-

iability. The submission of the approximately 3.4 million novel variants to the dbSNP has

significantly increased the number of variants available, particularly for the Bos primigenius
indicus genome. The annotation of SNVs InDels predicted to affect function of transcripts

reveal variants that could contribute to phenotypic differences among the Gyr, Girolando,

Guzerat and Holstein breeds. Also, we identified changes in the Girolando breed genetic com-

position since it was formed, which suggests that the selection pressure has preferred to retain

the variants for Gyr breed in the tropical climates, maybe due to their particular advantages in

this environment when compared to Holstein, such as rusticity, thermotolerance, and resis-

tance to endoparasites and ectoparasites. Therefore, this study provides the basis for further

investigations about potential genomic markers and molecular mechanisms associated with

economically important traits for breeding programs of these cattle breeds.
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