

UNIVERSITY OF GEORGIA

College of Agricultural & Environmental Sciences

Single-step genomic predictions for yield traits in US Holsteins with UPG and phenotype-pedigree truncation

Interbull 2021 - Virtual

Daniela Lourenco

Motivation

- Missing pedigree in the US Holstein data
 - ~ 10% sires
 - ~ 20% dams
- QP-transformation for A^{-1}
- (Quaas & Pollack, 1981; Westell et al., 1988)

$$\mathbf{A}^* = \begin{bmatrix} \mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{Q} \\ -\mathbf{Q}'\mathbf{A}^{-1} & \mathbf{Q}'\mathbf{A}^{-1}\mathbf{Q} \end{bmatrix}$$

• QP-transformation for \mathbf{H}^{-1} (Misztal et al., 2013)

$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & -(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2'(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}) & \mathbf{Q}_2'(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1})\mathbf{Q}_2 \end{bmatrix}$$

Biased EBV

• Altered QP-transformation for \mathbf{H}^{-1} (Tsuruta et al., 2019)

$$\mathbf{H}^* = \mathbf{A}^* + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} & -(-\mathbf{A}_{22}^{-1})\mathbf{Q}_2 \\ 0 & -\mathbf{Q}_2'(-\mathbf{A}_{22}^{-1}) & \mathbf{Q}_2'(-\mathbf{A}_{22}^{-1})\mathbf{Q}_2 \end{bmatrix}$$

Motivation

- Matilainen et al. (2016): female fertility traits in Nordic Reds
- Tsuruta et al. (2019): type traits in US Holsteins
- Masuda et al. 2018 (Protein)

Data	UPG	R2	b1
Truncated 2011	Pedigree	0.52	0.78
	Ped. + Genomic	0.32	0.51
	No UPGs	0.50	0.78

UPG poorly estimated
Large number of genotyped
females with missing
pedigree and no phenotypes

- Lourenco et al. (2014): pedigree truncation helped to reduce bias
- due to missingness

Objectives

- Assess bias and reliability of GEBV for bulls and cows in ssGBLUP
 - Milk, Fat, and Protein
 - UPG for A^{-1} (SS_UPG)
 - UPG for A^{-1} and A_{22}^{-1} (SS_UPG2)

- Six phenotype-pedigree truncation scenarios
 - 1980, 1990, or 2000
 - Pedigree depth 2 or 3
- Feasibility of ssGBLUP for dairy evaluations in the US

Data

• US Holstein data up to December 2018

Phenotype cut-off	Re	cords	- Genotypes -	Animals in pedigree	
scenario	N	Cows		Depth=3	Depth=2
Pheno1980	77.8 M	31.5 M	862 K	40.5 M	39.9 M

Analyses

QP-transformation for A⁻¹ in H⁻¹

• Altered QP-transformation for H⁻¹ (Tsuruta et al., 2019)

- BLUP90IOD2OMP1 for each phenotype-pedigree truncation scenario
 - APY with 15,000 core animals

Validation

- Complete data: 2018
- Reduced data: 2014
- 2,710 bulls
 - Reliability: [CORR(DYD, (G)EBV)] ²
 - Dispersion: DYD = $b_0 + b_1(G)EBV$
- 381,779 Cows
 - Predictive ability: $CORR(y_{adj}, (G)EBV)$
 - Dispersion: $y_{adi} = b_0 + b_1(G)EBV$

Reliability for bulls

b1 for bulls

Predictive ability for cows

b1 for cows

Rounds to convergence

ssGBLUP with many more genotypes

	This study	A. Cesarani (Friday)
Genotypes	862k	3.4M + data
Validation bulls	1,529	1,529
Reliability		
Milk	0.72	0.81
Fat	0.69	0.80
Protein	0.67	0.77

Conclusions

- Genomic predictions for yield traits in US Holsteins using single-step
 - UPG for A^{-1} and A_{22}^{-1}
 - Reliable and unbiased
- Removing old generations of pedigree and phenotypes do not compromise predictions for young selection candidates
- Large-scale dairy genomic evaluations are feasible
 - Up to 3.4 Million genotyped animals in less than 3 days
 - Indirect predictions could further reduce computing time

Acknowledgements

ARTICLE IN PRESS

J. Dairy Sci. 104 https://doi.org/10.3168/jds.2020-19789

© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Genomic predictions for yield traits in US Holsteins with unknown parent groups

A. Cesarani, 1* 0 Y. Masuda, 1 0 S. Tsuruta, 1 0 E. L. Nicolazzi, 2 P. M. VanRaden, 3 0 D. Lourenco, 1 0 and I. Misztal 1 0

¹Department of Animal and Dairy Science, University of Georgia, Athens 30602

²Council on Dairy Cattle Breeding, Bowie, MD 20716

³Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350